EPSON

Technical Manual

SEIKO EPSON CORPORATION

seconirolendrivers

NOTICE

No parts of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind aristing out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export licence from teh Ministry of International Trade and Industry or other approval from another government agency.

Note the following precautions when using semiconductor devices.

[Precautions for light]

Due to the solar battery principle, the characteristics of the semiconductor devices generally change when the devices are irradiated. This IC, therefore, may malfunction when exposed to light.

Since this IC is not completely lightproof, follow the precautions below when using a substrate or product on which it is mounted.

- (1) Design and mount the substrate or product so as to block out any light from reaching the IC during actual use.
- (2) For the inspection process, design the environments so as to block out any light from reaching the IC.
- (3) When blocking out light, take all surfaces of the IC chip into account.

© Seiko Epson corporation 1998 All right reserved.

i8088 and i8086 are registered trademarks of Intel Corporation.

Z80 is registered trademark of Zilog Corporation.

V20 and V30 are registered trademarks of Nippon Electric Corporation.

CONTENTS

- 1. Selection Guide
- 2. SED1200
- 3. SED1210
- 4. SED1220
- 5. SED1225 Series
- 6. SED1230 Series
- 7. SED1234/35 Series
- 8. SED1240 Series
- 9. SED1278
- 10. SED1280

SED1200 Series LCD Controller/Drivers

Selection Guide

LCD controller-drivers for small-sized displays

Built-in character generators together with segment and common drivers simplify the task of displaying microprocessor messages on small LCDs.

Part number	Supply voltage range (V)	LCD voltage range (V)	Duty	Segment	Common	Display RAM (characters)	Micropro- cessor interface	Extension display output	Package	Comment	
SED1200D0A									AL	JIS character	
SED1200Dob							4.1.2		Al pad chip	ASCII character	
SED1200F0A				50		20	4-bit	-	0554 00.1	JIS character	
SED1200Fob]						parallel		QFP1-80pin	ACOUL ab an ad an	
SED1200F1B	2.5–5.5	3.5–5.5	1/8,1/16		16				QFP14-80pin	ASCII character	
SED1210D0A									AI pad chip	JIS character	
SED1210Dob				40		40	4 or 8-bit	Serial		ASCII character	
SED1210F0A				40			parallel	Sella		JIS character	
SED1210Fob									QFP5-80pin	ASCII character	
SED1220Dxb					00				Au bump chip		
SED1220Txx					26		4 or 8-bit		TCP		
SED1221DxB									Au bump chip		
SED1221Txx	2.4–3.6	4.0-7.0	1/18,1/26	62		36	parallel	-	TCP	LCD statis drive allowed	
SED1220DXA					18		or		AI pad chip	LCD static drive allowed Three standard characters (JIS, ASCII, Cellular)	
SED122ADxb							Serial		Au bump chip	(JIS, ASCII, Cellular)	
SED122ATxx									TCP		
SED1225DxB	47.00		4/40 4/00		00	20	4 or 8-bit		Au bump chip		
SED1225TxB	1.7–3.6	3.0-6.0	1/18,1/26	64	26	36	parallel or Serial	-	TCP		
SED1278D			1/18,1/11,				4 or 8-bit		Al pad chip	Six standard characters	
SED1278F	4.5–5.5	3.0–5.5		40	16	80	parallel	Serial	QFP5-80pin	(0A/0B/0C/0E/0G/0H)	
SED1280F							Serial		QFP5-100pin	Three standard character (0A/0B/0C)	
SED1230D			1/30		30				Au bump chip		
SED1230T			1/30						TCP		
SED1231D			1/23	65	23				Au bump chip		
SED1231T]		1/23	05	23				TCP		
SED1232D	2.4-3.6	4.0-12.0				48			Au bump chip		
SED1232T	2.4-3.0	4.0-12.0	1/16		16	40			TCP	Built-in power circuit for LCD	
SED1233D			1/10	80	10		4 or 8-bit		Au bump chip	Three standard characters (JIS, ASCII, Cellular)	
SED1233T				00			parallel		TCP	SED1230/31/32/33	
SED1234D			1/30	62	30		or		Al pad chip	LCD static drive allowed	
SED1235D			1/16	02	16		Serial		AI pad chip	SED1234/35 LCD dynamic drive only.	
SED1240DxB			1/34		34				Au bump chip	LOD dynamic drive only.	
SED1240Txx			1/34						TCP		
SED1241DxB	18_55	5.0–16.0	1/26	80	26	80			Au bump chip		
SED1241Txx	- 1.8–5.5	0.0-10.0	1/20	80	20	00			TCP		
SED1242DxB			1/18		18				Au bump chip		
SED1242Txx			1/10						TCP		

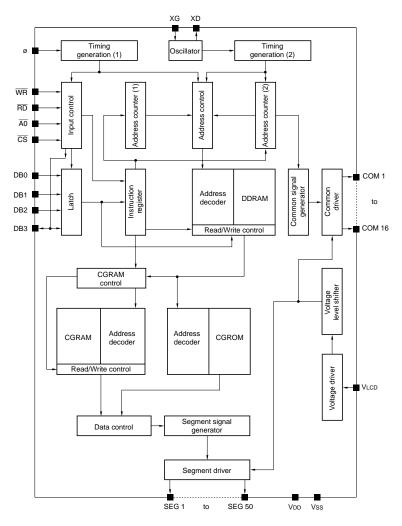
SED1200 Series LCD Controller/Drivers

Technical Manual

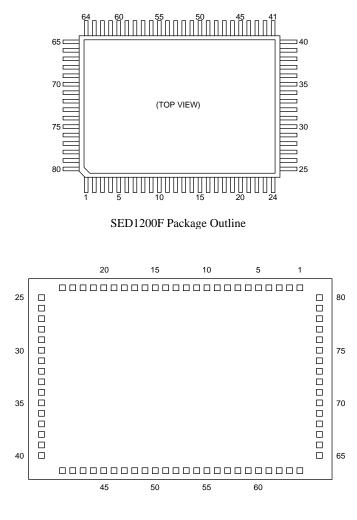
Contents

VERVIEW	
EATURES	
LOCK DIAGRAM	
INOUT	
IN DESCRIPTION	
OMMAND DESCRIPTION	
PECIFICATIONS	
PERATION	
PPLICATION NOTES	
PPENDIX A: CHARACTER CODES AND FONTS	
PPENDIX B: I/O TERMINAL STRUCTURE	

OVERVIEW


The SED1200 is a Liquid Crystal Display (LCD) character display controller-driver, capable of directly driving displays as large as 2 lines of 10 5×8 pixel characters, with a minimum of external components.

The SED1200 has an internal character generator (CG) consisting of 160 JIS ASCII characters in ROM and four user definable characters in RAM. The internal CG, a versatile set of cursor and display control commands, mean that the system CPU is only responsible for the display data and commands, and not for the LCD display itself.


FEATURES

- Internal display RAM to hold 20 8-bit character codes.
- Internal character generator
 - CGROM: 160 JIS ASCII characters.
 CGRAM: 4 user programmable 528
 - CGRAM: 4 user programmable 5×8 pixel characters
 - Font: 5×7 pixel characters plus the underline cursor.
 - JIS character set using SED1200F0A/SED1200D0A
- ASCII character set using SED1200F0B/ SED1200D0B
- Internal LCD driver circuitry
 - 50 segment driver lines
 - 16 common driver lines
 - Total size: Two lines of 10 characters each (maximum). One line of 20 characters (LCD panel dependent)
- CPU interface
 - 4-bit CPU data bus
 - 13 display control commands
- Low external component count
 - Built in RC oscillator (using one external feedback resistor)
 - Built in LCD driver voltage-divider network.
- Implemented using low power CMOS technology
 TTL compatible CPU interface
- Power supply
 - Logic: 2.5 V to 5.5 V
 - Logic. 2.5 V to 5.5 V - LCD: 3.5 V to 5.5 V
- 80 pin QFP package SED1200F and chip (SED1200D)

BLOCK DIAGRAM

PINOUT

SED1200D Die Outline

No.	NAME	No.	NAME	No.	NAME	No.	NAME
1	SEG17	21	COM4	41	COM10	61	SEG37
2	SEG16	22	COM5	42	COM11	62	SEG36
3	SEG15	23	COM6	43	COM12	63	SEG35
4	SEG14	24	COM7	44	COM13	64	SEG34
5	SEG13	25	COM8	45	COM14	65	SEG33
6	SEG12	26	A0	46	COM15	66	SEG32
7	SEG11	27	CS	47	COM16	67	SEG31
8	SEG10	28	RD	48	SEG50	68	SEG30
9	SEG9	29	WR	49	SEG49	69	SEG29
10	SEG8	30	Φ	50	SEG48	70	SEG28
11	SEG7	31	Xd	51	SEG47	71	SEG27
12	SEG6	32	Xg	52	SEG46	72	SEG26
13	SEG5	33	DB3	53	SEG45	73	SEG25
14	SEG4	34	DB2	54	SEG44	74	SEG24
15	SEG3	35	DB1	55	SEG43	75	SEG23
16	SEG2	36	DB0	56	SEG42	76	SEG22
17	SEG1	37	Vss	57	SEG41	77	SEG21
18	COM1	38	VLCD	58	SEG40	78	SEG20
19	COM2	39	Vdd	59	SEG39	79	SEG19
20	COM3	40	COM9	60	SEG38	80	SEG18

TABLE 1. SED1200 Pinout

PIN DESCRIPTION

CPU Interface

- **CS** Active low chip select input.
- **RD** Active low read enable input.
- **WR** Active low write strobe.
- **A0** Selects between instruction and display data access.
 - A0 = H: Display data
 - A0 = L: Instruction
- **D0–D2** Active high CPU data inputs.
- **D3** Active high CPU data input/output.
- Φ Clock input for command execution.

LCD Interface

COM1-COM16	LCD common driver outputs.
SEG1-SEG50	LCD segment driver outputs.

Oscillator

OSC1, OSC2

Terminals for the oscillator external feedback resistor, Rf. If an externally generated clock is used, it is connected to OSC1; OSC2 is left open.

Power Supply

Vdd	Logic power supply
VLCD	LCD power supply
Vss	System ground (0 V).

COMMAND DESCRIPTION

Command Summary

COMMAND NAME	CS	WR	RD	A0	D7	D6	D5	D4	D3	D2	D1	D0	REMARKS
SET CURSOR DIRECTION	0	0	1	0	0	0	0	0	0	1	0	D/I	D0 = 1 Decrement D0 = 0 Increment
CURSOR ADDRESS -1/+1	0	0	1	0	0	0	0	0	0	1	1	-1/+1	D0 = 1 Cursor address –1 D0 = 0 Cursor address +1
CURSOR FONT SELECT	0	0	1	0	0	0	0	0	1	0	0	A/U	D0 = 1 All dots blinking D0 = 0 Underline
CURSOR BLINK ON/OFF	0	0	1	0	0	0	0	0	1	0	1	ON/OFF	D0 = 1 ON D0 = 0 OFF
DISPLAY ON/OFF	0	0	1	0	0	0	0	0	1	1	0	ON/OFF	D0 = 1 ON D0 = 0 OFF
CURSOR ON/OFF	0	0	1	0	0	0	0	0	1	1	1	ON/OFF	D0 = 1 ON D0 = 0 OFF
SYSTEM RESET	0	0	1	0	0	0	0	1	0	0	0	0	Data RAM & CGRAM are not affected
LINE SELECT	0	0	1	0	0	0	0	1	0	0	1	2/1	D0 =1 2 line display (1/16 duty) D0 = 0 1 line display (1/8 duty)
SET CGRAM ADDRESS	0	0	1	0	0	0	1	0	(L	OWE	R ADI	DRESS)	Upper address fixed at 0H
SET CGRAM DATA	0	0	1	0	0	1	0		(C	GRAI	M DA	ΓΑ)	
SET CURSOR ADDRESS	0	0	1	0	1		2nd/1st (N DIGIT-1)			D6 = 1 2nd line N digit address D6 = 0 1st line N digit address			
SET CHARACTER CODE	0	0	1	1			(Cł	HARA	CTER	CTER CODE)			
BUSY FLAG CHECK	0	1	0	0	BF	*	*	*	BF	*	*	*	High impedance

TABLE 2. SED1200 Command Summary

Write Commands SET CURSOR DIRECTION

A0 = 0

	0						
D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	D

Sets the way in which the cursor address register changes as character data is written to the SED1200 by the CPU, and hence the direction of cursor movement.

D = 0: Address register increment direction D = 1: Address register decrement direction

CURSOR ADDRESS -1/+1

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	1	D

Adds one to, or subtracts one from, the current contents of the cursor address register, and hence moves the cursor.

D = 0: ADDRESS = ADDRESS + 1 D = 1: ADDRESS = ADDRESS - 1

CURSOR FONT SELECT

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	0	D

D = 0: Underline cursor

D = 1: All dots blinking

CURSOR BLINK ON/OFF

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	1	D

Controls flashing of the underline cursor.

D = 0: Flashing stopped

D = 1: Cursor flashing

DISPLAY ON/OFF

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	D

D = 0: Display Blanked

D = 1: Display on

Note: This command does not affect the contents of the display data RAM.

CURSOR ON/OFF

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	1	D

Controls the display of the cursor.

D = 0: Cursor off.

D = 1: Cursor on.

SYSTEM RESET

A0	=	0	
πv		v	

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0	0

Initializes the SED1200 to the following defaults.

- 1. CURSOR DIRECTION: Increment
- 2. CURSOR FONT: Underline
- 3. CURSOR BLINK: Off
- 4. DISPLAY: Off
- 5. CURSOR: Off
- 6. LINE SELECT: One line display
- 7. CURSOR ADDRESS: Address 0 (Line 1, character 0)
- Note: SYSTEM RESET does not affect the contents of the display data RAM, or the CGRAM.

LINE SELECT

A0	=	0	

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	1	D

Selects the number of displayed lines, and hence the LCD drive duty cycle.

- D = 0: 1 line display (1/8 duty cycle)
- D = 1: 2 line display (1/16 duty cycle)
- Note: The number of lines which can be displayed depends on the LCD panel used.

SET CURSOR ADDRESS

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
1	L	P5	P4	P3	P2	P1	P0

Presets the contents of the cursor address register, and hence the position of the cursor.

L = 0: Line 1 select

L = 1: Line 2 select

P5-P0: Position of character in selected line.

SET CHARACTER CODE

A0 = 1											
D7	D6	D5	D4	D3	D2	D1	D0				
C7	C6	C 5	C4	Сз	C2	C1	C0				

Writes the character code given by C7–C0 into the character data RAM at the location pointed to by the contents of the cursor address register. The contents of the cursor address register are then modified as specified by the last SET CURSOR DIRECTION instruction.

SET CGRAM ADDRESS

A0 = 0												
D7	D6	D5	D4	D3	D2	D1	D0					
0	0	1	0	*	*	A1	A0					

Presets the contents of the CGRAM address register to the position of one of the four user definable characters. The address is specified by A1 and A0.

SET CGRAM DATA

Loads the bit pattern D4–D0 into the CGRAM location specified by the current contents of the CGRAM address register. The contents of the CGRAM Address Register are incremented following each write of a SET CGRAM DATA instruction by the CPU.

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	D4	D3	D2	D1	D0

See section 4.3, Loading CGRAM.

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Supply voltage (1)	Vdd	-0.3 to +7.0	V
Supply voltage (2)	VLCD	VDD-7.0 to VDD+0.3	V
Input voltage	Vin	-0.3 to VDD+0.3	V
Output voltage	Vout	-0.3 to VDD+0.3	V
Operating temperature	Topr	-10 to +70	°C
Storage temperature	Tstg	-40 to +125	°C
Soldering temperature and time	Tsol	260, 10	°C, s

Read Commands

BUSY FLAG CHECK

Reading yields the status of the SED1200F.

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
BF	*	*	*	BF	*	*	*

BF = 0: SED1200 READY

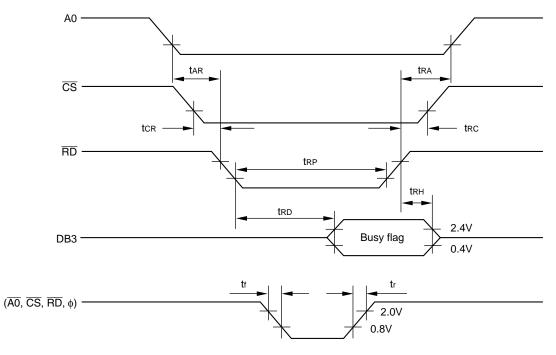
BF = 1: SED1200 BUSY

Bits D2–D0 are tristate during reads of the Busy Flag.

Electrical Specifications

DC Characteristics

VDD = 5 V


	,					V	ss = 0	/, Ta = −10 to +70°C
Parameter	Symbol	с	ondition		Rating		Unit	Pin
- aramotor	eysei		onation	min	typ	max	0	
Logic supply voltage	Vdd			4.5	5.0	5.5	V	Vdd
Liquid crystal display supply voltage	VLCD			Vdd-5.5	_	Vdd-3.5	V	VLCD
Oscillator feedback resistor	Rf	VDD = 5.0 V	, fosc = 100 kHz	240	310	380	kΩ	Xg, Xd
Operating frequency (1) oscillator or external clock frequency	fosc	VDD = 4.5 to	5.5 V	_	100	300	kHz	Xg, Xd
Operating frequency (2)	Φ	$V_{DD} = 4.5 \text{ to}$	5.5 V	—	_	3.2	MHz	Φ
External clock duty		VDD = 4.5 to	5.5 V	45	50	55	%	Xg, Φ
External clock rise time	tr	VDD = 4.5 to	5.5 V	_	_	50	ns	Xg, Φ
External clock fall time	tr	VDD = 4.5 to	5.5 V	_	_	50	ns	Xg, Φ
H-level input voltage (1)	VIH1	VDD = 4.5 to	5.5 V	2.0	_	Vdd	V	CS, RD, WR,
L-level input voltage (1)	VIL1	VDD = 4.5 to	5.5 V	0	_	0.8	V	DB0 to DB3, Φ
H-level input voltage (2)	VIH2	VDD = 4.5 to	5.5 V	0.8 Vdd	Vdd	Vdd	V	
L-level input voltage (2)	VIL2	VDD = 4.5 to	5.5 V	0	0	0.2 Vdd	V	XG
H-level input leakage current	Іцн	Vdd = 5.5 V	, VIH = 5.5 V	_	_	-1.0	μA	Φ, XG,
L-level input leakage current	ILIL	Vdd = 5.5 V	, VIL = 0 V	_	_	1.0	μΑ	DB0 to DB3
Input pull-up current	lipu	VDD = 5.0 V	VDD = 5.0 V, VIL = 0 V		10	30	μΑ	CS, RD, WR, A0
H-level output current	Іон	VDD = 4.5 to	5.5 V, Vон = 2.4 V	-1.0	_	_	mA	
L-level output current	Iol	Vdd = 5.5 V	, Vol = 0.4 V	1.6	_	_	mA	DB3
Common driver output current (1)	Іон	VDD level	VDD=4.5 V	-20	_	_	μΑ	COM1 to COM16
Common driver output current (2)	Iol	VLCD level	VLCD=1.0 V	20	_	_	μΑ	COM1 to COM16
Common driver output current (3)	Iol	VL1 level	Voltage-divider resistor in low	±8	_	_	μΑ	COM1 to COM16
Common driver output current (4)	Iol	VL4 level	impedance state.	±8	_	_	μΑ	COM1 to COM16
Segment driver output current (1)	Іон	VDD level	1/16 duty	-12	_	_	μΑ	SEG1 to SEG50
Segment driver output current (2)	Iol	VLCD level	0.5 V voltage drop Measured on one	12	_	_	μΑ	SEG1 to SEG50
Segment driver output current (3)	Iol	VL2 level	pin with other pins	±4	_	_	μΑ	SEG1 to SEG50
Segment driver output current (4)	Iol	VL3 level	open circuit.	±4	_	_	μΑ	SEG1 to SEG50
Voltage-divider resistor (1)	Rd1	Normal con	ditions	30	130	300	kΩ	
Voltage-divider resistor (2)	Rd2	Low impeda	ance state	3.0	13	30	kΩ	
Voltage-divider resistor		1/8 Duty		_	11/400	_	_	
low impedance duty	tRd1/tRd2	1/16 Duty		_	11/200	_	_	
Command execution time	tcomd		sing edge to the nal processing	_	_	16/Ф (MHz)	μs	
Average operating current	IDD	fosc = 100 k Φ = 1 MHz,	WR = A0 = 5.0 V,	_	80	150	μΑ	Vdd

VDD = 3 V

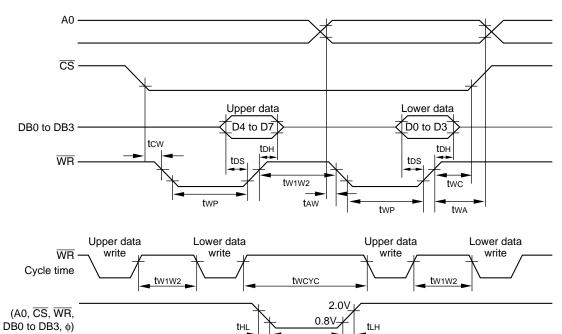
Parameter	Symbol	~	ondition		Rating		Unit	Pin
Falameter	Symbol	0	onution	min	typ	max	Unit	ГШ
Logic supply voltage	Vdd			2.5	3.5	4.5	V	Vdd
Liquid crystal display supply voltage	VLCD			VDD-5.5	_	Vdd-3.5	V	VLCD
Oscillator feedback resistor	Rf	VDD = 3.0	V, fosc = 100 kHz	210	290	370	kΩ	Xg, Xd
Operating frequency (1) oscillator or external clock frequency	fosc	Vdd = 2.5 V		_	_	300	kHz	Xg, Xd
Operating frequency (2)	Φ	VDD = 2.5 V		-	_	1.0	MHz	Φ
External clock duty		VDD = 2.5v		_	50	_	%	OSC1, Φ
External clock rise time	tr	Vdd = 2.5 V		_	_	50	ns	OSC1, Φ
External clock fall time	tr	VDD = 2.5 V		_	_	50	ns	OSC1, Φ
H-level input voltage (1)	Vih1	Vdd = 2.5 V		0.8 Vdd	—	Vdd	V	CS, RD, WR,
L-level input voltage (1)	VIL1	Vdd = 2.5 V		0	_	0.2 Vdd	V	DB0 to DB3, Φ
H-level input voltage (2)	VIH2	Vdd = 2.5V		0.8 Vdd	_	_	V	
L-level input voltabe (2)	VIL2	Vdd = 2.5 V		_	_	0.2 Vdd	V	XG
H-level input leakage current	Ішн	Vdd = 4.5 V		_	_	-1.0	μΑ	Ф, XG,
L-level input leakage current	Ilil	Vdd = 4.5 V		_	_	1.0	μΑ	DB0 to DB3
Input pull-up current	lipu	VDD = 3.5 V		1.0	4.0	15	μA	CS, RD, WR, AC
H-level output current	Іон	VDD = 2.5 V	, Vон = 2.0 V	200	_	_	μA	DDo
L-level output current	Iol	VDD = 2.5 V	, Vol = 0.5 V	200	_	_	μΑ	DB3
Common driver output current (1)	Іон	VDD level	VDD-VLCD = 3.5 V	-20	_	_	μA	
Common driver output current (2)	Iol	VLCD level	Voltage-divider	20	_	_	μΑ	
Common driver output current (3)	Iol	VL1 level	resistor in low impedance state.	±8	_	_	μΑ	COM1 to COM16
Common driver output current (4)	Iol	VL4 level	1/16 duty	±8	_	_	μΑ]
Segment drivrer output current (1)	Іон	VDD level	0.5 V voltage drop	-12	_	_	μΑ	
Segment drivrer output current (2)	Iol	VLCD level	Measured on one	12	_	_	μA	
Segment drivrer output current (3)	Iol	VL2 level	pin with other pins open circuit.	±4	_	_	μΑ	SEG1 to SEG50
Segment drivrer output current (4)	Iol	VL3 level		±4	_	_	μΑ]
Voltage-divider resistor (1)	Rd1	Normal con	ditions	_	130	_	kΩ	
Voltage-divider resistor (2)	Rd2	Low impeda	ance state	_	13	_	kΩ	
Voltage-divider resistor low	1	1/8 Duty		_	11/400	_	_	
impedance duty	tRd1/tRd2	1/16 Duty		_	11/200	_	_	
Command execution time	tcomd		se time to the nal processing	_	—	16/Ф (MHz)	μs	
Average operating current	IDD		$\pm 1.5 V$ kHz, $\Phi = 500 \text{ kHz}$ WR = A0 = VDD,	_	60	_	μΑ	Vdd

AC Characteristics

MPU Read Timing

VDD = 4.5 to 5.5 V, Ta = -10 to 70° C.

Parameter	Symbol		Unit		
Falanetei	Symbol	min	typ	max	Onit
Setup time for A0 $\rightarrow \overline{RD}$	tar	0	—	—	ns
Setup time for $\overline{CS} \to \overline{RD}$	tcr	0	_	—	ns
RD delay output time	trd	_	_	250	ns
Hold time for $\overline{RD} \rightarrow A0$	t RA	20	—	—	ns
Hold time for $\overline{RD} \to \overline{CS}$	trc	20	_	—	ns
Data hold time	tкн	10	_	—	ns
Read pulsewidth	t RP	350	—	—	ns
Input fall time	tr	_	_	50	ns
Input rise time	tr	—		50	ns


Note: Load on pin DB3 is CL = 100 pF.

VDD=2.5 to 4.5 V, Ta=-10 to $70^\circ\text{C}.$

Parameter	Symbol		Unit		
Falameter	Symbol	min	typ	max	Onit
Setup time for A0 $\rightarrow \overline{RD}$	tar	0	—	—	ns
Setup time for $\overline{CS} \to \overline{RD}$	tcr	0	—	—	ns
RD delay output time	trd	_	—	350	ns
Hold time for $\overline{RD} \rightarrow A0$	t RA	0	—	—	ns
Hold time for $\overline{RD} \to \overline{CS}$	trc	0	_	—	ns
Data hold time	trн	10		—	ns
Read pulsewidth	t RP	400	—	—	ns
Input fall time	tr	_	—	50	ns
Input rise time	tr	—	—	50	ns

Note: Load on pin DB3 is CL = 100 pF.

MPU Write Timing

VDD = 5 V, Ta = -10 to $70^{\circ}C$.

Parameter	Symbol		Rating				
Faranieler	Symbol	min	typ	max	Unit		
$A0 \rightarrow \overline{WR}$ setup time	taw	0	—	—	ns		
$\overline{\text{CS}} \to \overline{\text{WR}}$ setup time	tcw	0	—	—	ns		
Data setup time	tDS	120	_	—	ns		
$\overline{\text{WR}} \rightarrow \text{A0}$ hold time	twa	20	_	_	ns		
$\overline{WR} \rightarrow \overline{CS}$ hold time	twc 20		—	—	ns		
Data hold time	tDH	20	_	_	ns		
Write pulsewidth	twp	200		_	ns		
Upper write pulse rising edge to lower	tw1w2	200			n 0		
write pulse falling edge time.	LVV1VV2	200		_	ns		
Lower write pulse rising edge to upper	twcyc	16/Φ					
write pulse falling edge time.	LWCYC	(MHz)		_	ns		
Input fall time	tr	—	—	50	ns		
Input rise time	tr	—	—	50	ns		

VDD = 3 V, Ta = -10 to $70^{\circ}C$.

Parameter	Symbol		Unit			
Falameter	Symbol	min	typ	max	Unit	
$A0 \rightarrow \overline{WR}$ setup time	taw	0	—	—	ns	
$\overline{\text{CS}} \to \overline{\text{WR}}$ setup time	tcw	0	—	_	ns	
Data setup time	tos	120	_	_	ns	
$\overline{\text{WR}} \rightarrow \text{A0} \text{ hold time}$	twa	0	_		ns	
$\overline{WR} \rightarrow \overline{CS}$ hold time	twc	0	—	_	ns	
Data hold time	tон	100	_	_	ns	
Write pulsewidth	twp	200	_		ns	
Upper write pulse rising edge to lower	tw1w2	200			20	
write pulse falling edge time.	LVV1VV2	200			ns	
Lower write pulse rising edge to upper	twcyc	16/Φ			20	
write pulse falling edge time.	LVVCYC	(MHz)			ns	
Input fall time	tf	—	—	50	ns	
Input rise time	tr	—	—	50	ns	

OPERATION

Data Input/Output

Because the command codes are 8-bits wide and the SED1200's data bus is only 4-bits wide, the command codes must be split into two nibbles (4-bits), which are written separately.

Nibble	Н	igh-	orde	ər	Low-order					
Data Bus Bit	D3	D2	D1	D0	D3	D2	D1	D0		
Command Bit	D7	D6	D5	D4	D3	D2	D1	D0		

The high-order nibble is written first, and is latched internally by the SED1200. When the low-order nibble is written, the eight bits of data are shifted into either the character registers or the command register, depending on the level of A0 during the low-nibble write cycle.

When the busy flag is read, only one read cycle is required.

New commands must not be written to the SED1200 if the device is executing one currently, so the busy flag should be checked before commands are written. It is not necessary to check the busy flag between writes of the upper and lower nibbles of commands. If the busy flag is not going to be checked between writes of individual commands then the MPU must wait long enough to allow for command execution to complete. The maximum time taken by the SED1200 to execute a command is 16/ Φ , where Φ is the system clock frequency.

System Initialization

Figure 1 is a flow chart of a possible SED1200 initialization sequence. Note that busy flag checks, and busy/wait loops have been omitted for the sake of brevity.

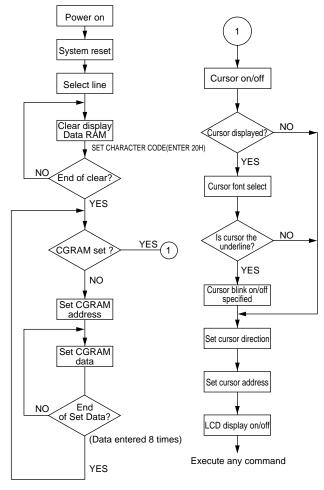


Figure 1. Initialization Flow Chart

SED1200 Series

Loading CGRAM

The character generator RAM is loaded with a character bit pattern using a combination of one SET CGRAM ADDRESS command and eight SET CGRAM DATA commands. For example, to load the character shown in figure 2 into the area of CGRAM corresponding to character code 01H, the sequence shown in table 3 is used.

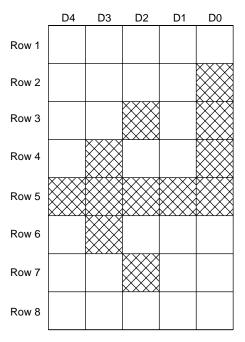
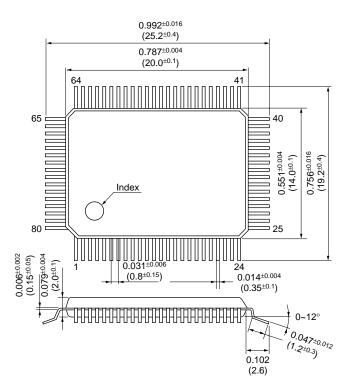
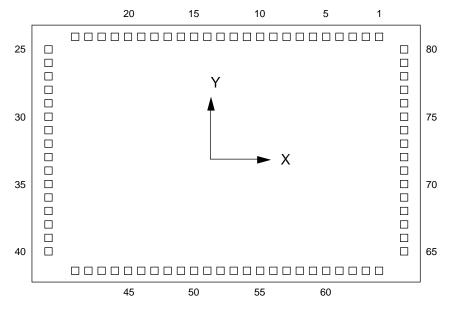


Figure 2. User Defined Character


TABLE 3. Loading User Defined Character

Step	A0	WR	Data	Action
1	0	0	21H	Set address of CGRAM 01
2	0	0	40H	Data for Row 1
3	0	0	41H	Data for Row 2
4	0	0	45H	Data for Row 3
5	0	0	49H	Data for Row 4
6	0	0	5FH	Data for Row 5
7	0	0	48H	Data for Row 6
8	0	0	44H	Data for Row 7
9	0	0	40H	Data for Row 8

Notes: 1. These steps do not include busy flag checks.


2. Row 8 maybe used by the underline cursor.

Mechanical Specifications SED1200F Package Dimensions

SED1200D Package Dimensions

Chip size:	$5.86 \text{ mm} \times 3.41 \text{ mm}$
Chip thickness:	$0.40~\text{mm}\pm0.03~\text{mm}$
Pad size:	$0.90 \text{ mm} \times 0.90 \text{ mm}$
Pad pitch:	0.19 mm

Pad				Pa	ad			
Number	Name	Χ (μm)	Υ (μm)	Number	Name	Χ (μm)	Υ (μm)	
1	SEG17	2123	1552	41	COM10	-2220	-1552	
2	SEG16	1932	1552	42	COM11	-2029	-1552	
3	SEG15	1742	1552	43	COM12	-1839	-1552	
4	SEG14	1551	1552	44	COM13	-1648	-1552	
5	SEG13	1361	1552	45	COM14	-1458	-1552	
6	SEG12	1170	1552	46	COM15	-1267	-1552	
7	SEG11	980	1552	47	COM16	-1077	-1552	
8	SEG10	789	1552	48	SEG50	-886	-1552	
9	SEG9	599	1552	49	SEG49	-696	-1552	
10	SEG8	408	1552	50	SEG48	-505	-1552	
11	SEG7	218	1552	51	SEG47	-315	-1552	
12	SEG6	27	1552	52	SEG46	-124	-1552	
13	SEG5	-163	1552	53	SEG45	66	-1552	
14	SEG4	-354	1552	54	SEG44	257	-1552	
15	SEG3	-544	1552	55	SEG43	447	-1552	
16	SEG2	-735	1552	56	SEG42	638	-1552	
17	SEG1	-925	1552	57	SEG41	828	-1552	
18	COM1	-1116	1552	58	SEG40	1019	-1552	
19	COM2	-1306	1552	59	SEG39	1209	-1552	
20	COM3	-1497	1552	60	SEG38	1400	-1552	
21	COM4	-1687	1552	61	SEG37	1590	-1552	
22	COM5	-1878	1552	62	SEG36	1781	-1552	
23	COM6	-2068	1552	63	SEG35	1971	-1552	
24	COM7	-2259	1552	64	SEG34	2162	-1552	
25	COM8	-2778	1429	65	SEG33	2777	-1385	
26	A0	-2778	1238	66	SEG32	2777	-1195	
27	CS	-2778	1048	67	SEG31	2777	-1004	
28	RD	-2778	857	68	SEG30	2777	-814	
29	WR	-2778	667	69	SEG29	2777	-623	
30	Φ	-2778	476	70	SEG28	2777	-433	
31	OSC2	-2778	286	71	SEG27	2777	-242	
32	OSC1	-2778	95	72	SEG26	2777	-52	
33	D3	-2778	-95	73	SEG25	2777	139	
34	D2	-2778	-286	74	SEG24	2777	329	
35	D1	-2778	-476	75	SEG23	2777	520	
36	D0	-2778	-667	76	SEG22	2777	710	
37	Vss	-2778	-857	77	SEG21	2777	901	
38	VLCD	-2778	-1048	78	SEG20	2777	1091	
39	Vdd	-2778	-1238	79	SEG19	2777	1282	
40	COM9	-2778	-1429	80	SEG18	2777	1472	

APPLICATION NOTES

Display Oscillator

The SED1200 has an internal oscillator to generate the timing signals required for the LCD display.

If the internal oscillator is used, connect the feedback resistor Rf as shown in figure 3. The feedback resistor leads must be kept as short as possible to reduce stray capacitance and the possibility of crosstalk between the oscillator and adjoining signals.

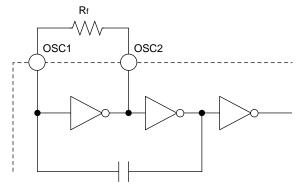


Figure 3. Using the Internal Oscillator

If an external clock is used, connect it to OSC1, as shown in figure 4.

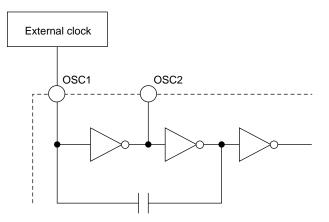


Figure 4. Using an External Clock

The relationship between the oscillator frequency and the LCD drive frame frequency is

fFR = fosc/1600For example if fosc = 100 kHz, fFR = 62.5 Hz

Command Clock (Φ)

When the system MPU issues a command to the SED1200, the timing for the execution of the command is derived from Φ , the command clock. This would normally be the system MPU clock.

The maximum execution time for a command is $16/\Phi$. For example if Φ = 1 MHz, the maximum execution time for a command is 16 µs.

LCD Drive Waveforms

The SED1200 has an internal low source-impedance voltage-driver network, of the form shown in figure 5. The switches Swd are closed to switch the segment data.

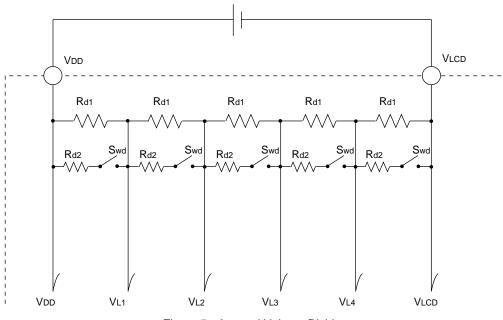
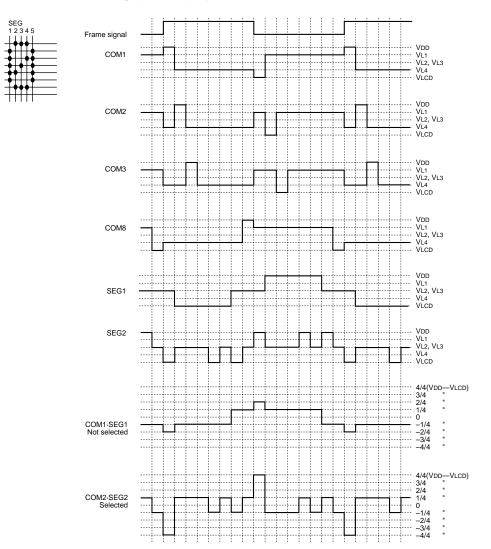
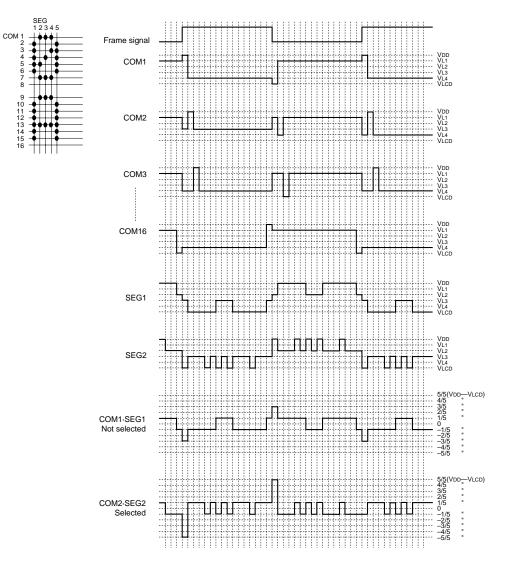
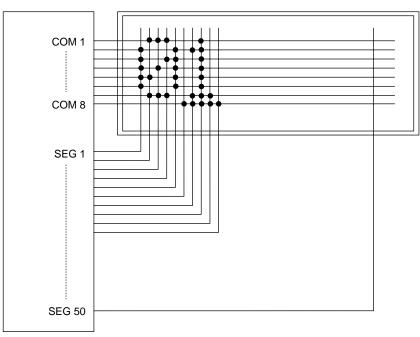



Figure 5. Internal Voltage Divider

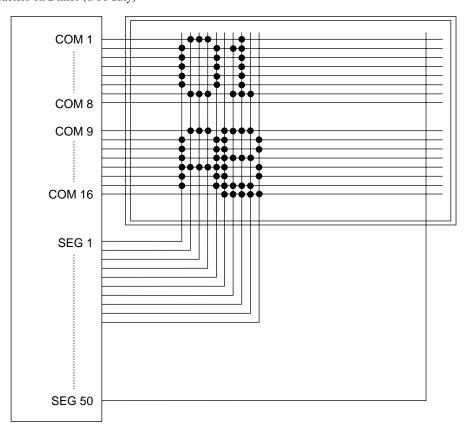

• LCD Drive Waveform – 1 Line Display (1/8 Duty Cycle)

COM 1

۶

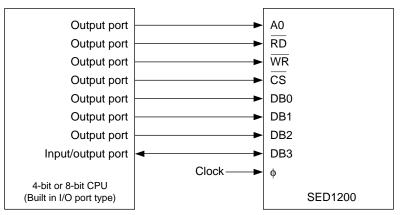


• LCD Drive Waveform – 2 Line Display (1/16 Duty Cycle)

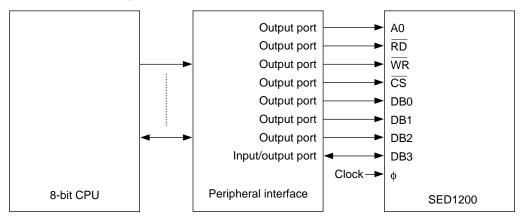


LCD Display Interface

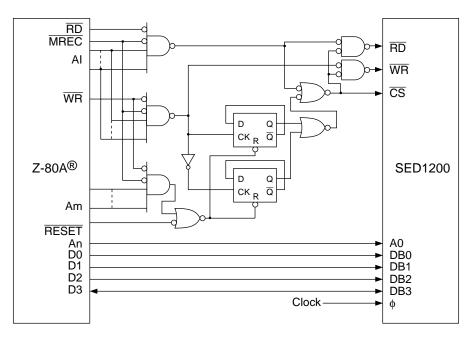
• 10 Characters on 1 line (1/8 duty)

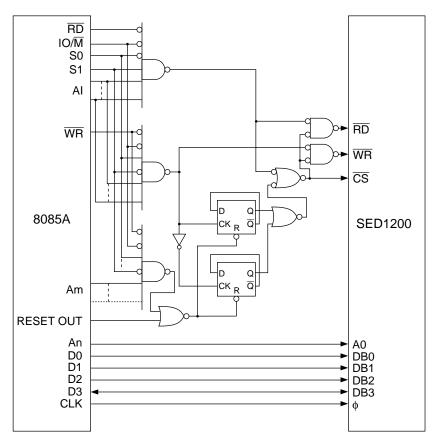


• 10 Characters on 2 lines (1/16 duty)



CPU Interface

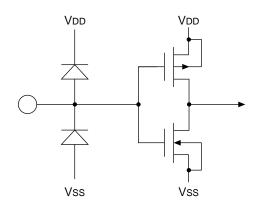

• 4-bits CPU with internal I/O port


• 8-bit CPU with external I/O port

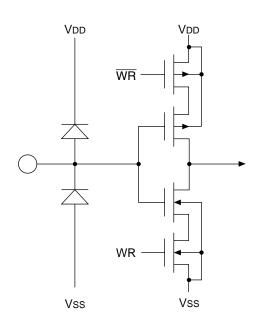
• Interface with Z-80A type CPU

• Interface with 8085A type CPU

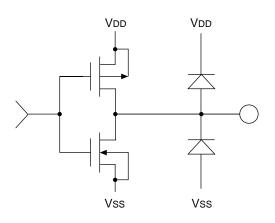
APPENDIX A: CHARACTER CODES AND FONTS SED1200F0a/SED1200D0A

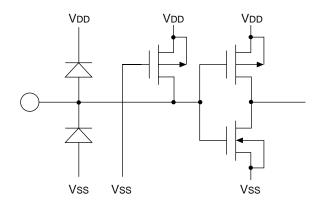

						Lower 4		o to D3)) of Cha	aracter	Code (H	Hexade	cimal)				
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0	C		M ARE DOTS	A												
	2							8	3	Ć)	:4:				=	
	3	0		2				6	ľ				## _#	<		2	?
idecimal)	4												K			┠╍┨	
Higher 4 bit (D4 to D7) of Character Code (Hexadecimal)	5				5			Ļ		24	l, i T	•••••• •••				•*•	
aracter Co	6	•			: <u> </u>				•							ŀ"I	
D7) of Ch	7	j] -**				ا ا	IJ	\geq	•	••••••••• ••••••]	÷
bit (D4 to	A					•_		•••••	 **	-¶	:: <u>.</u> :		••• • •	•			• • •
Higher 4	в			•	;		••• • •			•					••••• •••		•
	с	9					-	•••		•••				•••••	•*•		 :
	D	 							••••	I,I		.			•• •	••••	

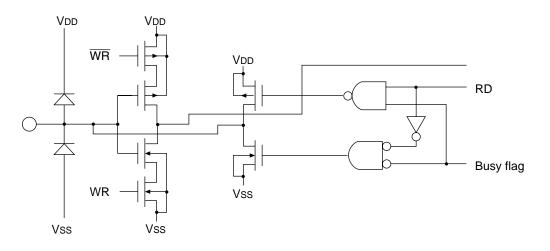
SED1200Fob/SED1200Dob

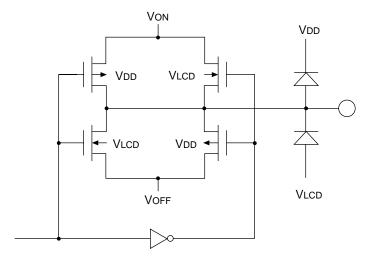

					Lov	ver 4 b	it (Do t	o D3) o	of Char	acter 0	Code (I	Hexade	ecimal))			
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
	0	С	GRAN 5 x 8 [1 AREA DOTS	Ą												
	2								•								
nal)	3																•
Higher 4 bit (D4 to D7) of Character Code (Hexadecimal)	4																
r Code (F	5											• • • • • • • • • • • • • • • • • • •		••••		••••	
Characte	6		••••														
to D7) of (7		•••••				.	<u>ار ا</u>			••					• •	
4 bit (D4 1	A							•									••
Higher -	В	•••					:										
	С	-														•	
	D	•	•			· · ·	•		-								

APPENDIX B: I/O TERMINAL STRUCTURE


 Input Terminal (No pull-up) Terminals used: Φ, OSC1


• Input Terminal (No pull-up) Terminals used: D0 to D2


• Output Terminal (No pull-up) Terminals used: OSC2


• Input Terminal (Pull-up) Terminals used: CS, RD, WR, A0

• I/O Terminal (No pull-up) Terminals used: D3

• LCD Drive Terminal (No pull-up) Terminals used: SEG1 to SEG50, COM1 to COM16

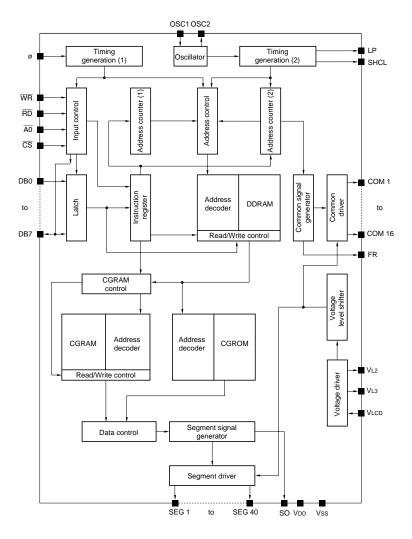
SED1210 LCD Controller/Drivers

Technical Manual

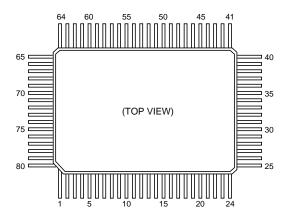
Contents

DVERVIEW
EATURES
3-2
PINOUT
PIN DESCRIPTION
COMMAND DESCRIPTION
SPECIFICATIONS
DPERATION
APPLICATION NOTES
APPENDIX A: CHARACTER CODES AND FONTS
APPENDIX B: I/O TERMINAL STRUCTURE

OVERVIEW


The SED1210F is a Liquid Crystal Display (LCD) character display controller/driver, capable of directly driving displays of up to 16 characters. If an external expansion driver is used, displays of up to 40 characters can be generated.

The SED1210F has an internal character generator (CG) consisting of 160 JIS ASCII characters in ROM and four user definable characters in RAM. The internal CG, combined with a versatile set of cursor and display control commands, means that the system CPU is only responsible for the display data and commands, and not for the LCD display itself.


FEATURES

- Internal display RAM to hold 40 8-bit character codes.
- Internal character generator
 - CGROM: 160 JIS ASCII characters.
 - CGRAM: 4 user programmable 5×8 pixel characters
 - Font: 5×7 pixel characters plus the underline cursor, of 5×8 pixel characters alone.
 - JIS character set using SED1210F0A
- ASCII character set using SED1210F0B
- Internal LCD driver circuitry
 - 40 segment driver outputs
 - 16 common driver outputs
 - Total size: 2 lines of 20 characters each (maximum). One line of 40 characters (using an SED1181F for external expansion)
- CPU interface
 - 8-bit CPU data bus
 - 13 display control commands
- Low external component count
 - Built in RC oscillator (using one external feedback resistor)
 - Built in LCD driver voltage-divider network.
- Implemented using low power CMOS technology
 TTL compatible CPU interface
- IIL compatible
 Power supply
 - Logic: 2.5 V to 5.5 V
 - LCD: 3.5 V to 5.5 V
- 80-pin QFP package (plastic)

BLOCK DIAGRAM

PINOUT

No.	NAME	No.	NAME	No.	NAME	No.	NAME
1	SEG17	21	COM4	41	COM10	61	SEG37
2	SEG16	22	COM5	42	COM11	62	SEG36
3	SEG15	23	COM6	43	COM12	63	SEG35
4	SEG14	24	COM7	44	COM13	64	SEG34
5	SEG13	25	COM8	45	COM14	65	SEG33
6	SEG12	26	A0	46	COM15	66	SEG32
7	SEG11	27	CS	47	COM16	67	SEG31
8	SEG10	28	RD	48	SO	68	SEG30
9	SEG9	29	WR	49	LP	69	SEG29
10	SEG8	30	Φ	50	SHCL	70	SEG28
11	SEG7	31	OSC2	51	FR	71	SEG27
12	SEG6	32	OSC1	52	D3	72	SEG26
13	SEG5	33	D7	53	D2	73	SEG25
14	SEG4	34	D6	54	D1	74	SEG24
15	SEG3	35	D5	55	D0	75	SEG23
16	SEG2	36	D4	56	VL2	76	SEG22
17	SEG1	37	Vss	57	VL3	77	SEG21
18	COM1	38	VLCD	58	SEG40	78	SEG20
19	COM2	39	Vdd	59	SEG39	79	SEG19
20	COM3	40	COM9	60	SEG38	80	SEG18

TABLE 1. SED1210F Pinout

PIN DESCRIPTION

CPU Interface

CS RD WR	Active low chip select input. Active low read enable input. Active low write strobe.
A0	Selects between instruction and display
	data access.
	A0 = H: Display data
	A0 = L: Instruction
DB0–DB6	Active high CPU data inputs.
DB7	Active high CPU data input/output.
Φ	Clock input for command execution.

LCD Interface

COM1-COM16	LCD command driver outputs.
SEG1-SEG40	LCD segment driver outputs.
SO	Serial segment data output
LP	Latch output to segment driver
SHCL	Shift clock output to segment
FR	Frame output to segment driver

Oscillator

OSC1, OSC2 Terminals for the oscillator external feedback resistor, Rf. If an externally generated clock is used, it is connected to OSC1; OSC2 is left open.

Power Supply

Vdd	Logic power supply input
VLCD	LCD power supply input
Vss	System ground (0 V) input
Vl2, Vl3	LCD driver voltage outputs

COMMAND DESCRIPTION

Command Summary

TABLE 2. SED1210F Command Summary

COMMAND NAME	CS	\overline{WR}	RD	A0	D7	D6	D5	D4	D3	D2	D1	D0	REMARKS
SET CURSOR DIRECTION	0	0	1	0	0	0	0	0	0	1	0	D/I	D0 = 1 Decrement D0 = 0 Increment
CURSOR ADDRESS -1/+1	0	0	1	0	0	0	0	0	0	1	1	-1/+1	D0 = 1 Cursor address –1 D0 = 0 Cursor address +1
CURSOR FONT SELECT	0	0	1	0	0	0	0	0	1	0	0	A/U	D0 = 1 All dots blinking D0 = 0 Underline
CURSOR BLINK ON/OFF	0	0	1	0	0	0	0	0	1	0	1	ON/OFF	D0 = 1 ON D0 = 0 OFF
DISPLAY ON/OFF	0	0	1	0	0	0	0	0	1	1	0	ON/OFF	D0 = 1 ON D0 = 0 OFF
CURSOR ON/OFF	0	0	1	0	0	0	0	0	1	1	1	ON/OFF	D0 = 1 ON D0 = 0 OFF
SYSTEM RESET	0	0	1	0	0	0	0	1	0	0	0	0	DATA RAM & CGRAM are not affected
LINE SELECT	0	0	1	0	0	0	0	1	0	0	1	2/1	D0 = 1 2 line display (1/16 duty) D0 = 0 1 line display (1/8 duty)
SET CGRAM ADDRESS	0	0	1	0	0	0	1	0	(L	OWE	R ADI	DRESS)	Upper address fixed at 0H
SET CGRAM DATA	0	0	1	0	0	1	0		(C	GRA	M DAT	ГА)	
SET CURSOR ADDRESS	0	0	1	0	1			2nd/	'1st (N	I DIG	IT-1)		D6 = 1 2nd line N digit address D6 = 0 1st line N digit address
SET CHARACTER CODE	0	0	1	1			(Cł	(CHARACTER CODE)			DE)		
BUSY FLAG CHECK	0	1	0	0	BF	*	*	*	*	*	*	*	* High impedance

Write Commands SET CURSOR DIRECTION

A0 = 0

//0 -	Č.						
D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	D

Sets the way in which the cursor address register changes as character data is written to the SED1210F by the CPU, and hence the direction of cursor movement.

D = 0: Address register increment direction D = 1: Address register decrement direction

CURSOR ADDRESS -1/+1

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	1	D

Adds one to, or subtracts one from, the current contents of the cursor address register, and hence moves the cursor.

D = 0: ADDRESS = ADDRESS + 1 D = 1: ADDRESS = ADDRESS - 1

CURSOR FONT SELECT

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	0	D

D = 0: Underline cursor

D = 1: All dots blinking

CURSOR BLINK ON/OFF

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	1	D

Controls flashing of the underline cursor.

D = 0: Blinking stopped

D = 1: Cursor blinking

DISPLAY ON/OFF

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	D

D = 0: Display off

D = 1: Display on

Note: This command does not affect the contents of the display data RAM.

CURSOR ON/OFF

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	1	D

Controls the display of the cursor.

D = 0: Cursor off.

D = 1: Cursor on.

SYSTEM RESET

۵0	_	n
πυ	_	U

A0 -	0						
D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0	0

Initializes the SED1210F to the following defaults. CURSOR DIRECTION: Increment CURSOR FONT: Underline CURSOR BLINK: Off DISPLAY: Off CURSOR: Off LINE SELECT: One line display CURSOR ADDRESS: Address 0 (Line 1, character 0) Note: SYSTEM RESET does not affect the contents of the display data RAM, or the CGRAM.

LINE SELECT

A0 = 0								
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	1	0	0	1	D	

Selects the number of displayed lines, and hence the LCD drive duty cycle.

- D = 0: 1 line display (1/8 duty cycle)
- D = 1: 2 line display (1/16 duty cycle)
- Note: The number of lines which can be displayed depends on the LCD panel used.

SET CURSOR ADDRESS

A0 = 0											
D7	D6	D5	D4	D3	D2	D1	D0				
1	L	P5	P4	Рз	P2	P1	P0				

Presets the contents of the cursor address register, and hence the position of the cursor.

L = 0: Line 1 select

L = 1: Line 2 select

P5-P0: Position of character in selected line.

SET CHARACTER CODE

A0 = 1										
D7										
C7	C6	C 5	C4	Сз	C2	C1	C0			

Writes the character code given by C7–C0 into the character data RAM at the location pointed to by the cursor address register. The contents of the cursor address register are then modified as specified by the last SET CURSOR DIRECTION instruction.

SET CGRAM ADDRESS

 $\overline{WR} = 0, A0 = 0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	*	*	A1	A0

Presets the contents of the CGRAM address register to the position of one of the four user definable characters. The address is specified by A1 and A0.

SET CGRAM DATA

Loads the bit pattern D4–D0 into the CGRAM location specified by the current contents of the CGRAM address register. The contents of the CGRAM address register are incremented following each write of a SET CGRAM DATA instruction by the CPU.

A0 = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	D4	D3	D2	D1	D0

See Loading CGRAMs.

SPECIFICATIONS

Absolute Maximum Ratings

Vss = GND = 0 V and $Ta = 25^{\circ}C$ unless otherwise specified

Parameter	Symbol	Rating	Unit
Supply voltage (1)	Vdd	-0.3 to +7.0	V
Supply voltage (2)	VLCD	VDD-7.0 to VDD+0.3	V
Input voltage	Vin	-0.3 to VDD+0.3	V
Output voltage	Vout	-0.3 to VDD+0.3	V
Operating temperature	Topr	-20 to +70	°C
Storage temperature	Tstg	-60 to +150	°C
Soldering temperature and time	Tsol	260, 10	°C, s

Note: Exceeding the absolute maximum ratings can cause permanent damage to the device. Functional operation under these condition is not implied.

Read Commands BUSY FLAG CHECK

BUSY FLAG CHECK

Reading yields the status of the SED1210F.

$\overline{RD} = 0, A0 = 0$

D7	D6	D5	D4	D3	D2	D1	D0
BF	*	*	*	*	*	*	*

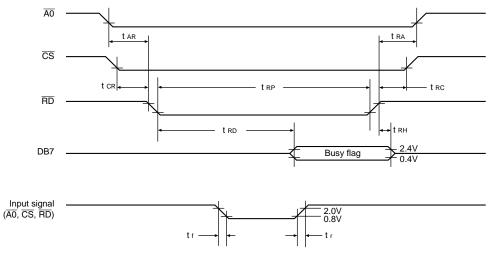
BF = 0: SED1210F READY

BF = 1: SED1210F BUSY

Bits D6–D0 are tristate during reads of the Busy Flag.

Electrical Specifications DC Characteristics

VDD = 5 V


					Rating			⁄, Ta = −20 to +70°C
Parameter	Symbol	C	ondition	min	typ	max	Unit	Pin
Liquid crystal display supply voltage	VLCD			VDD-5.5	_	Vdd-3.5	V	VLCD
Oscillator feedback resistor	Rf	VDD = 5.0 V	, fosc = 100 kHz	240	310	380	kΩ	OSC1, OSC2
Oscillator frequency	fosc	Vdd = 5.0V	V, Rf = 300 kΩ	_	100	_	kHz	OSC1, OSC2
Operating frequency (1) oscillator or external clock frequency	fosc	Vdd = 4.5V		_	_	300	kHz	OSC1
Operating frequency (2)	Φ	VDD = 4.5 to	5.5 V		—	3.2	MHz	Φ
External clock duty		VDD = 4.5 tc	5.5 V	45	50	55	%	OSC1, Φ
External clock rise time	tr	VDD = 4.5 to	5.5 V	—	—	50	ns	OSC1, Φ
External clock fall time	tr	VDD = 4.5 to	5.5 V	_	_	50	ns	OSC1, Φ
H-level input voltage (1)	VIH1	VDD = 4.5 to	5.5 V	2.0	_	Vdd	V	CS, RD, WR,
L-level input voltage (1)	VIL1	VDD = 4.5 to	5.5 V	0	_	0.8	V	DB0 to DB7, Φ, A0
H-level input voltage (2)	VIH2	VDD = 4.5 to	5.5 V	0.8 Vdd	Vdd	Vdd	V	OSC1
L-level input voltage (2)	VIL2	VDD = 4.5 to	5.5 V	0	0	0.2 Vdd	V	OSC1
H-level input leakage current	Іцн	Vdd = 5.5 V	, VIн = 5.5 V	_	_	-1.0	μΑ	Φ, OSC1,
L-level input leakage current	LIL	Vdd = 5.5 V, Vil = 0 V		_	_	1.0	μA	DB0 to DB7
Input pull-up current	IIPU	VDD = 5.0 V, VIL = 0 V		3.0	10	30	μΑ	CS, RD, WR, A0
H-level output current (1)	Іон1	VDD = 4.5 to 5.5 V, VOH = 2.4 V		-1.0	_	_	mA	DB7
L-level output current (1)	IOL1	VDD = 4.5 to	VDD = 4.5 to 5.5 V, VoL = 0.4 V		_	_	mA	DB7
H-level output current (2)	Іон2	Vdd = 4.5 V	, Voн = 4.0 V	200	—	_	μA	FR, LP
L-level output current (2)	IOL2	Vdd = 4.5 V	, Vol = 0.5V	200	_	_	μA	XSCL, SO
Common driver output current (1)	Іон	VDD level	VDD-VLCD = 3.5 V	-20	_	_	μA	COM1 to COM16
Common driver output current (2)	Iol	VLCD level	Dividing resistor in	20	_	_	μA	COM1 to COM16
Common driver output current (3)	Iol	VL1 level	low impedance	±8	_	_	μA	COM1 to COM16
Common driver output current (4)	Iol	VL4 level	state. 1/16 duty.	±8	_	_	μA	COM1 to COM16
Segment driver output current (1)	Іон	VDD level	0.5 V voltage drop.	-12	_	_	μA	SEG1 to SEG40
Segment driver output current (2)	Iol	VLCD level	Measured on one	12	_	_	μA	SEG1 to SEG40
Segment driver output current (3)	Iol	VL2 level	pin with other pins	±4	_	_	μA	SEG1 to SEG40
Segment driver output current (4)	Iol	VL3 level	open circuit.	±4	_	_	μΑ	SEG1 to SEG40
D :	Іон	VDD-VLCD =	3.5V	_	2	_	μΑ	
Driver current	Icl	0.5 V voltag	je drop	_	2	_	μΑ	Vl2, Vl3
Voltage-divider resistor (1)	Rd1	Normal con	ditions	30	130	300	kΩ	
Voltage-divider resistor (2)	Rd2	Low impeda	ance state	3.0	13	30	kΩ	
Voltage-divider resistor low		1/8 Duty		_	11/400	_	_	
impedance duty	tRd1/tRd2	1/16 Duty		_	11/200	_	_	
Command execution time	tcomd		sing edge to nternal processing	-	_	16/ Φ	μs	
Average operating current	ססן	fosc = 100 k Φ = 1 MHz,	WR = A0 = 5.0 V,	_	80	150	μА	Vdd

VDD = 3 V

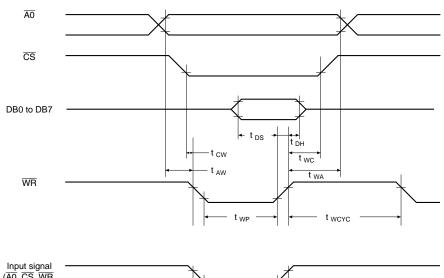
Vss = 0 V, Ta = -20 to 70° C

						/ 33 = 0	V, $Ia = -20$ to $70^{\circ}C$	
Parameter	Symbol	c	ondition		Rating		Unit	Pin
				min	typ	max		
Liquid crystal display supply voltage	VLCD			3.5	_	5.5	V	VLCD
Oscillator feedback resistor	Rf	VDD = 3.0	V, fosc = 100 kHz	210	290	370	kΩ	OSC1, OSC2
Oscillator frequency	fosc	VDD = 3.0	V, Rf = 300 k Ω	_	100	—	kHz	OSC1, OSC2
Operating frequency (1) oscillator or external clock frequency	fosc	Vdd = 2.5 V		_	_	300	kHz	OSC1
Operating frequency (2)	Φ	VDD = 2.5 to	9 4.5 V	-	—	1	MHz	Φ
External clock duty		VDD = 2.5 to	9 4.5 V	—	50	—	%	OSC1, Φ
External clock rise time	tr	VDD = 2.5 tc	9 4.5 V	_	_	50	ns	OSC1, Φ
External clock fall time	tr	VDD = 2.5 to	9 4.5 V	_	_	50	ns	OSC1, Φ
H-level input voltage (1)	VIH1	VDD = 2.5 to	9 4.5 V	0.8 Vdd	_	_	V	CS, RD, WR, A0
L-level input voltage (1)	VIL1	VDD = 2.5 tc	9 4.5 V	_	_	0.2 Vdd	V	DB0 to DB7, Φ
H-level input voltage (2)	VIH2	VDD = 2.5 to	9 4.5 V	0.8 Vdd	_	_	V	0001
L-level input voltabe (2)	VIL2	VDD = 2.5 to	9 4.5 V	_	_	0.2 Vdd	V	OSC1
H-level input leakage current	Іцн	Vdd = 4.5 V		_	_	_	μΑ	Φ, OSC1,
L-level input leakage current	Ilil	VDD = 4.5 V		_	_	_	μΑ	DB0 to DB7
Input pull-up current	lipu	Vdd = 3.5 V		_	_	_	μΑ	CS, RD, WR, A0
H-level output current (1)	Іон1	Vdd = 2.5 V	, Vон = 2.0 V	200	_	_	μΑ	
L-level output current (1)	IOL1	VDD = 2.5 V, VOL = 0.5 V		200	_	_	μΑ	DB7
H-level output current (2)	Іон2	VDD = 2.5 V, VOH = 2.0 V		200	—	_	μΑ	FR, LP
L-level output current (2)	IOL2	VDD = 2.5 V	, Vol = 0.5 V	200	_	_	μΑ	XSCL, SO
Common driver output current (1)	Іон	VDD level	VDD-VLCD = 3.5 V	-20	_	_	μΑ	
Common driver output current (2)	Iol	VLCD level	Diving resistor in	20	_	_	μΑ	
Common driver output current (3)	Iol	VL1 level	low impedance	±8	_	_	μΑ	COM1 to COM16
Common driver output current (4)	Iol	VL4 level	state.	±8	_	_	μΑ	
Segment drivrer output current (1)	Іон	VDD level	1/16 duty 0.5 V voltage drop.	-12	_	_	μA	
Segment drivrer output current (2)	Iol	VLCD level	Measured on one	12	_	_	μΑ	
Segment drivrer output current (3)	Iol	VL2 level	pin with other pins	±4	_	_	μΑ	SEG1 to SEG40
Segment drivrer output current (4)	Iol	VL3 level	open circuit.	±4	_	_	μΑ	
Driver current (1)	Іон	VDD-VLCD =	3.5 V	_	2	_	μΑ	
Driver current (2)	Iol	0.5 V voltag	je drop	_	2	_	μΑ	VL2, VL3
Voltage-divider resistor (1)	Rd1	Normal con	ditions	_	130	_	kΩ	
Voltage-divider resistor (2)	Rd2	Low impeda	ance state	_	13	_	kΩ	
Voltage-divider resistor		1/8 Duty		_	11/400	_		
low impedance duty	tRd1/tRd2	1/16 Duty		_	11/200	_	-	
Command execuiton time	tcomd	From WR ri the end of in	se time to nternal processing	_	_	16/ Φ	μs	
Average operating current	lod	$V_{DD}-V_{SS} = 3$ $V_{DD}-V_{LCD} = 0$ $\Phi = 500 \text{ kH}$ $\overline{CS} = \overline{RD} = 0$ $Rf = 300 \text{ kG}$	z = 5 V z WR = A0 = VDD	_	60	_	μΑ	Vdd

AC Characteristics MPU Read Timing

VDD = 5 V, Ta = -20 to $70^{\circ}C$.

Parameter	Symbol		Rating		Unit
Falameter	oyinibor		typ	max	Onit
Setup time for A0 $\rightarrow \overline{RD}$	tar	0	—	—	ns
Setup time for $\overline{CS} \to \overline{RD}$	tcr	0	—	—	ns
RD delay output time*	trd	_	—	200	ns
Hold time for $\overline{RD} \rightarrow A0$	t RA	20	—	—	ns
Hold time for $\overline{RD} \to \overline{CS}$	trc	20	—	_	ns
Data hold time	tкн	10	—	—	ns
Read pulsewidth	t RP	300	—	—	ns
Input fall time	tr	_	—	50	ns
Input rise time	tr			50	ns

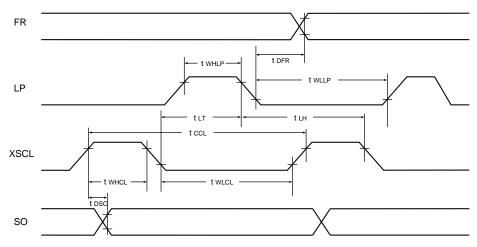

Note: Load on pin DB7 is CL = 100 pF.


VDD = 3 V, Ta = -20 to $70^{\circ}C$.

Parameter	Symbol		Unit		
Falameter	Symbol	min	typ	max	Unit
Setup time for A0 $\rightarrow \overline{RD}$	tar	0	—		ns
Setup time for $\overline{CS} \to \overline{RD}$	tCR	0	—	_	ns
RD delay output time*	t RD	—	—	350	ns
Hold time for $\overline{RD} \rightarrow A0$	t RA	0	—		ns
Hold time for $\overline{RD} \to \overline{CS}$	t _{RC}	0	—	_	ns
Data hold time	tкн	10	—		ns
Read pulsewidth	t RP	400	—		ns
Input fall time	tr	—	—	50	ns
Input rise time	tr	—	_	50	ns

Note: Load on pin DB7 is CL = 100 pF.

MPU Write Timing

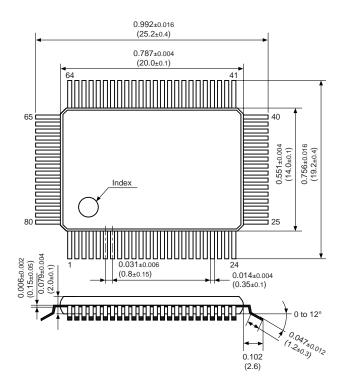

VDD = 5 V, Ta = -20 to $70^{\circ}C$.

Parameter	Symbol		Unit		
Falameter	Symbol	min	typ	max	Onit
$A0 \rightarrow \overline{WR}$ setup time	taw	0	—	—	ns
$\overline{\text{CS}} \to \overline{\text{WR}}$ setup time	tcw	0	—	—	ns
Data setup time	tos	120		_	ns
$\overline{\text{WR}} \rightarrow \text{A0} \text{ hold time}$	twa	20	—	—	ns
$\overline{WR} \rightarrow \overline{CS}$ hold time	twc	20	—	_	ns
Data hold time	tон	20	—		ns
Write pulsewidth	twp	200	—	—	ns
Write cycle	twcyc	16/Φ	—	_	μs
Input fall time	tr	_	—	50	ns
Input rise time	tr	—		50	ns

VDD = 3 V, Ta = -20 to $70^{\circ}C$.

Parameter	Symbol		Unit		
Falameter	Symbol	min	typ	max	Onit
$A0 \rightarrow \overline{WR}$ setup time	taw	0	_	_	ns
$\overline{\text{CS}} \to \overline{\text{WR}}$ setup time	tcw	0	_	—	ns
Data setup time	tos	120	_	—	ns
$\overline{\text{WR}} \rightarrow \text{A0} \text{ hold time}$	twa	0	_	_	ns
$\overline{WR} \rightarrow \overline{CS}$ hold time	twc	0	_	—	ns
Data hold time	tон	100	_	—	ns
Write pulsewidth	twp	200	_	_	ns
Write cycle	twcyc	16/Φ	_	—	μs
Input fall time	tr	_	—	50	ns
Input rise time	tr			50	ns

X-driver Control Timing



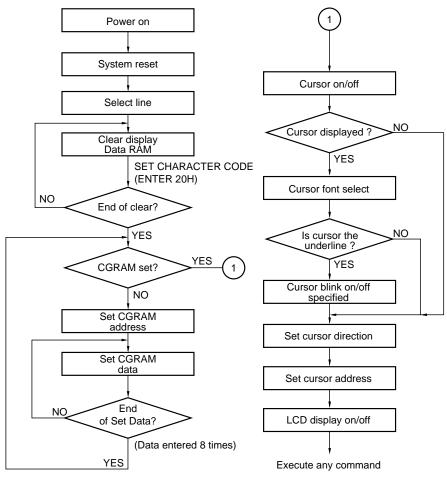
VDD = 2.5 to 5.5 V, Ta = -20 to 70° C.

Parameter	Symbol		Unit		
r ai ainetei	Symbol	min	typ	max	Onit
Shift clock cycle	tcc∟	3.3	10	—	μs
Shift clock "H" pulsewidth	twhcl	1.0	—	—	μs
Shift clock "L" pulsewidth	twlcl	1.0	—	—	μs
Delay time for XSCL \rightarrow SO output	toso	—	—	1	μs
Latch pulse "H" pulsewidth	twhlp	1.0		—	μs
Latch pulse "L" pulsewidth	twllp	300		—	ns
Latch time	t∟⊤	500	—	—	ns
Latch hold time	tlн	500		_	ns
Delay time for frame signal	t DFR	—		500	ns

Note: Load capacitance CL = 15 pF

Mechanical Specifications

OPERATION


Data Input/Output

New commands must not be written to the SED1210F if it is currently executing the last one, so the busy flag should be checked before commands are written.

If the busy flag is not going to be checked between writes of individual commands then the MPU must wait long enough to allow for command execution to complete. The maximum time taken by the SED1210F to execute a command is given by $16/\Phi$, where Φ is the system command clock frequency.

System Initialization

Figure 1 shows a flow chart of a possible SED1210F initialization sequence. Note that busy flag checks, and busy/wait loops have been omitted for the sake of brevity.

Loading CGRAM

The character generator RAM is loaded with a character bit pattern using a combination of one SET CGRAM ADDRESS command and eight SET CGRAM DATA commands. For example, to load the character shown in figure 2 into the area of CGRAM corresponding to character code 01H, the sequence shown below would be used.

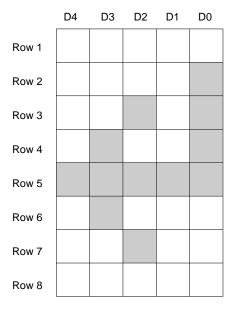


Figure 2. User Defined Characters

Step	A0	WR	Data	Action
1	0	0	21H	Set address of CGRAM 01
2	0	0	40H	Data for Row 1
3	0	0	41H	Data for Row 2
4	0	0	45H	Data for Row 3
5	0	0	49H	Data for Row 4
6	0	0	5FH	Data for Row 5
7	0	0	48H	Data for Row 6
8	0	0	44H	Data for Row 7
9	0	0	40H	Data for Row 8

Notes: 1. These steps do not include any BUSY FLAG CHECK commands.

2. Row 8 may be used by the underline cursor.

APPLICATION NOTES

Display Oscillator

The SED1210F has an internal oscillator to generate the timing signals required for the LCD display.

If the internal oscillator is used, connect the feedback resistor Rf as shown in figure 3. The feedback resistor leads must be kept as short as possible to reduce stray capacitance and the possibility of crosstalk between the oscillator and adjoining signals.

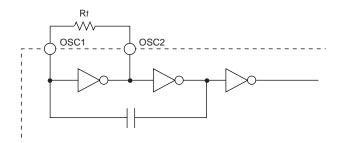


Figure 3. Using the Internal Oscillator

If an external clock is used, connect it to OSC1 as shown in figure 4.

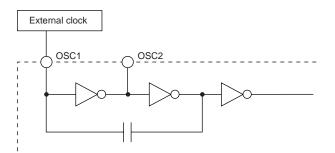
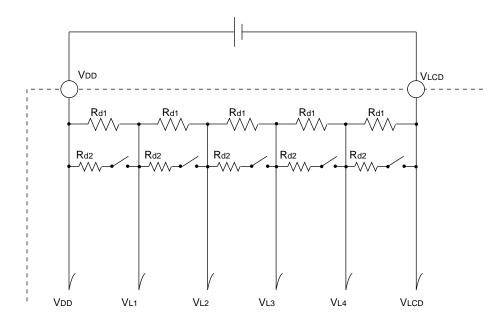


Figure 4. Using an External Clock

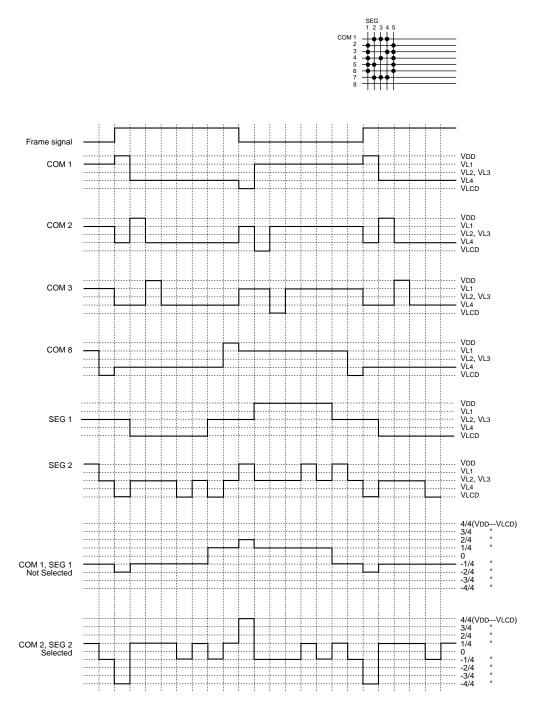
The relationship between the oscillator frequency and the LCD drive frame frequency is

fFR = fosc/1600For example if fosc = 100 kHz, fFR = 62.5 Hz

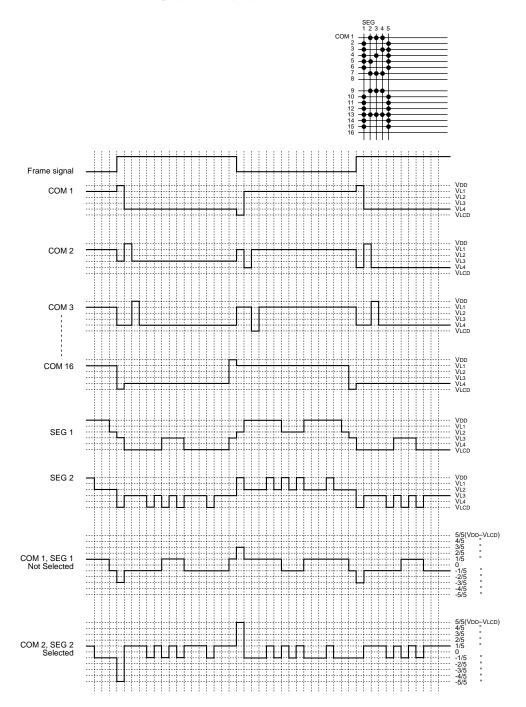

Command Clock (Φ)

When the system MPU issues a command to the SED1210F, the timing for the execution of the command is derived from Φ , the command clock. This would normally be the system MPU clock.

The maximum execution time for a command is given by $16/\Phi$. For example if $\Phi = 1$ MHz, the maximum execution time for a command is 16 µs.

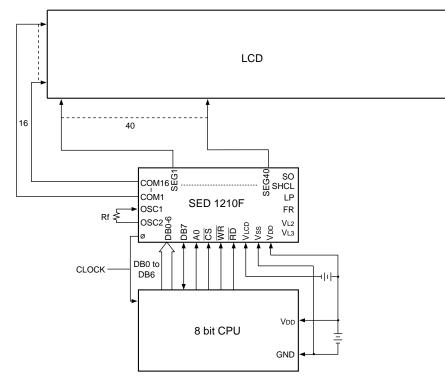

LCD Drive Waveforms

The SED1210F has an internal low source-impedance voltage-driver shown in the figure below. The switches are closed to switch the segment data.

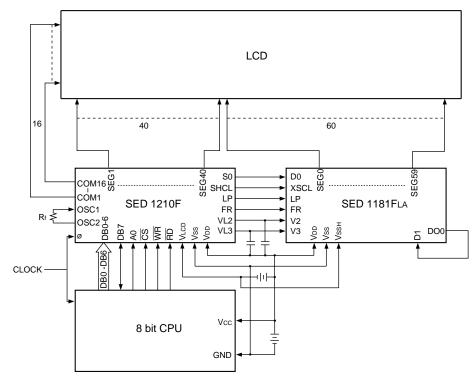


Examples of drive waveforms are shown below.

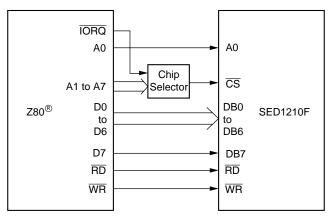
• LCD Drive Waveform – 1 Line Display (1/8 Duty Cycle)



• LCD Drive Waveform – 2 Line Display (1/16 Duty Cycle)



LCD Display Interface


• 8 Characters/2 line

• 20 Characters/2 lines

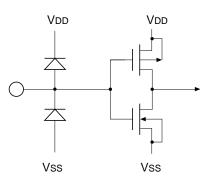
• Interface with 8-bit CPU

Z80 is a registered trademark of Zilog Corporation.

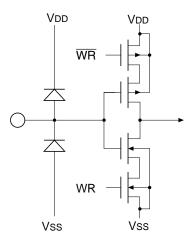
APPENDIX A: CHARACTER CODES AND FONTS SED1210F0A

			Lower 4 bit (Do to D3) of Character Code (Hecadecimal)														
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0		CG	RAM /	AREA 8 DOT	S											
	2		l	••					3	ŧ.		:#:		:			
decimal)	3			2		4			i.			## ##					·
Higher 4 bits (D4 to D7) of Character Code (Hexadecimal)	4														M		
acter Coo	5										l.,i			÷		•**•	
of Chara	6	•			:				•	!				1	m	! "]	
D4 to D7)	7	; •	•	! "			.	<u>ن</u> ا		22	•						÷.
r 4 bits (I	A			:		•	==			4	-			•			• : :
Highe	в			-	ņ			†]			ŗ			≞.∔			•
	с	3			.	.		•••							••••		~
	D	·····			•							.		;	 =	••••	

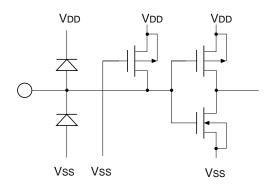
SED1210

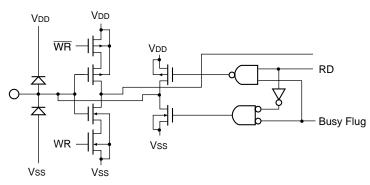

SED1210F0B

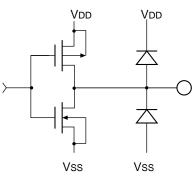
			Lower 4 bit (Do to D3) of Character Code (Hecadecimal)														
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	0		CG	RAM / 5 x 3	AREA 8 DOT	S						>~					
	2			••						i.		: ! ::		:			
decimal)	3					4			:			## ##	# ;	4			•
Higher 4 bits (D4 to D7) of Character Code (Hexadecimal)	4												K				
acter Coo	5													•••		•••	
of Chara	6	•			:			-	•	.			k			F"1	
D4 to D7)	7		•	! "	•			<u>ا.</u> ا		:::	•		÷			••••	
r 4 bits (I	А	÷		÷			34										••
Highe	в	••		<u>.</u>			:	•									
	с				÷									;			
	D		÷.	•	•	₽.	••••		•				ij,				

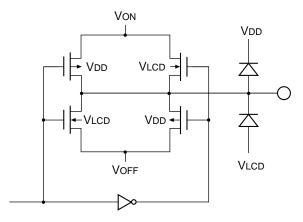

APPENDIX B: I/O TERMINAL STRUCTURE

I/O Terminal Structure Input


 Input Terminal (No pull-up) Terminals used: Φ, OSC1


• Input Terminal (No pull-up) Terminals used: DB0 to DB6


• Input Terminal (Pull-up) Terminals used: CS, RD, WR, A0


• I/O Terminal (No pull-up) Terminals used: DB7

• Output Terminal (No pull-up) Terminals used: OSC2, SO, SHCL, LP, FR

• LCD Drive Terminal (No pull-up) Terminals used: SEG1 to SEG40, COM1 to COM16

SED1220 LCD Controller/Drivers

Technical Manual

Contents

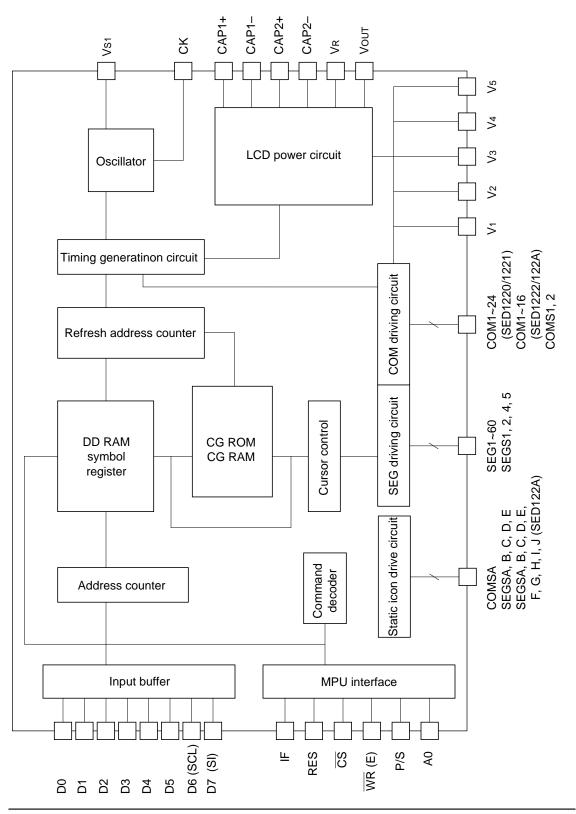
OVERVIEW	4–1
FEATURES	4–1
BLOCK DIAGRAM	4–2
CHIP SPECIFICATION	4–3
DESCRIPTION OF PINS	4–11
FUNCTIONAL DESCRIPTION	4–14
COMMAND	4–21
CHARACTER GENERATOR	
ABSOLUTE MAXIMUM RATINGS	4–31
DC CHARACTERISTICS	
TIMING CHARACTERISTICS	
MPU INTERFACE (REFERENCE EXAMPLES)	
INTERFACE TO LCD CELLS (REFERENCE)	4–38
LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS)	

OVERVIEW

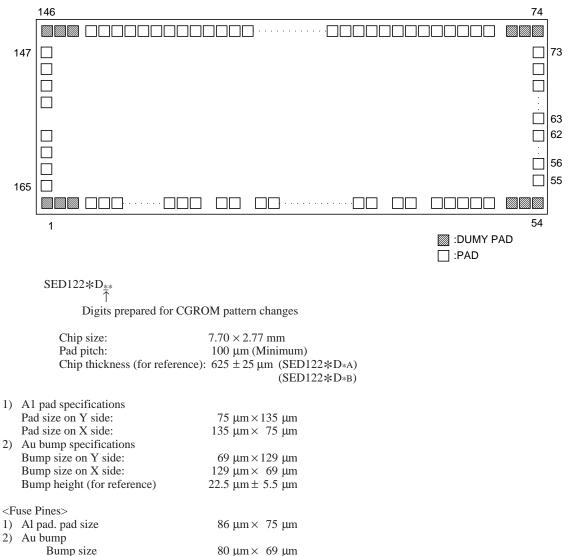
SED1220 is a dot matrix LCD controller/driver for character display. Using 4bits data, 8bits data or serial data being provided from the micro computer, it displays up to 36 characters, 4 user defined characters and up to 120 symbols.

Up to 256 types of built-in character generator ROMs are prepared. Each character font is consisted of 5×8 dots. It also contains the RAM for displaying 4 user defined characters each font consisting of 5×8 dots. It is symbol register allows character display with high degree of freedom. This handy equipment can be operated with minimum power consumption with its low power consumption design, standby and sleeping mode.

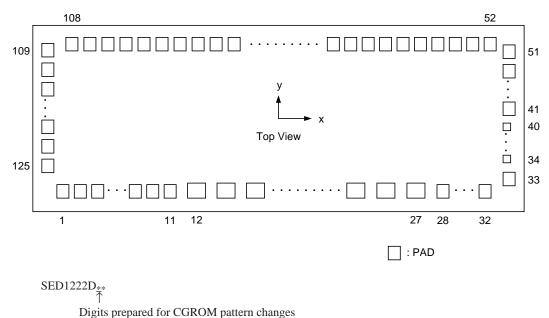
FEATURES


- Built-in data display RAM 36 characters + 4 user defined characters + 120 symbols.
- CG ROM (For up to 256 characters), CG RAM (for 4 characters) and symbol register (for 120 symbols).
- No. of display digit and lines
 - < In normal mode >
 - ① (12 digits + 4 segments for signal) × 3 lines + 120 symbols + 5 static symbols (SED1220D**)
 - ② (12 digits + 4 segments for signal) × 2 lines + 120 symbols + 5 static symbols (SED1221D**)
 - ③ 12 digits × 2 lines + 120 symbols + 5 static symbols (SED1222D**)
 - ④ (12 digits + 4 segments for signal) × 2 lines + 120 symbols + 10 static symbols (SED122AD**)
 - < In standby mode >
 - ① 5 static symbols
 - ^② 5 static symbols
 - ③ 5 static symbols
 - ④ 10 static symbols

- Built-in CR oscillation circuit (C and R contained)
- Accepts external clock inputHigh-speed MPU interface
- Affords interface with both 68/80 system MPUs Affords interface through 4 bits and 8 bits
- Affords serial interface
- Character font consists of 5×8 dots
- Duty ratio ① 1/26 (SED1220D**)
 - 2 1/18 (SED1221D**, SED1222D**)
- Simplified command setting
- Built-in power circuit for driving liquid crystal Power amplifier circuit, power regulation circuit and voltage followers × 4
- Built-in electronic volume function
 - Low power consumption 80 μA max. (In normal operation, including operating current of the power supply).
 20 μA max. (In standby mode for displaying static icon).
 5 μA max. (In sleeping mode when display is turned off).
- Power supply VDD - VSS VDD - V5 −2.4 V ~ −3.6 V −4.0 V ~ −6.0 V
- Temperature range for wide range operation $Ta = -30 \sim 85^{\circ}C$
- CMOS process
- Shipping style


SED1222D*A
SED122*D*B
SED122*T**

· This unit does not employ radiation protection design


BLOCK DIAGRAM

CHIP SPECIFICATION SED1220D**/1221D**/122AD**

SED1222D**

Chip size: $7.70 \times 2.77 \text{ mm}$ Pad pitch: $124 \ \mu\text{m}$ (Minimum)Chip thickness (for reference): $625 \pm 50 \ \mu\text{m}$ (SED1222D*A)

 A1 pad specifications Pad size on Y side: Pad size on X side:

90 μm × 96 μm 96 μm × 90 μm (PAD. No. 1 ~ 11, 28 ~ 32, 52 ~ 108) 175 μm ×135 μm (PAD. No. 12 ~ 27)

<Fuse Pines>

1) Al pad. pad size

 $86 \; \mu m \times \; 75 \; \mu m$

<SED1220D**/1221D**>

Unit:	μm
-------	----

 (FS^{\ast}) : Being fuse adjusting pins, maintain them on floating state. CK pins $% S^{\ast}$: Should be VDD when not being used.

<SED1222D**>

Unit:	μm
-------	----

PAD		COORDINATES		PAD		COORDINATES	
No.	Name	Х	Y	No.	Name	Х	Y
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Name A0 WR CS D7 D6 D5 D4 D3 D2 D1 D0 VbD Vss V5 V4 V3	X -3312 -3180 -2916 -2784 -2652 -2520 -2388 -2256 -2124 -1992 -1786 -1506 -1226 -946 -666		No. 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	NameSEG4SEG5SEG6SEG7SEG8SEG9SEG10SEG11SEG12SEG13SEG14SEG15SEG16SEG17SEG18SEG19	X 3100 2976 2852 2728 2604 2480 2356 2232 2108 1984 1860 1736 1612 1488 1364 1240	
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	V2 V1 V0 VR VOUT CAP2- CAP2+ CAP1- CAP1+ VSS VDD CK VS1 P/S I/F RES VDD	-386 -106 174 454 734 1014 1294 1574 1854 2134 2414 2692 2836 2980 3124 3268 3694	-1204 -1228 -1228 -1228 -919	71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87	SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36	$ \begin{array}{r} 1116\\ 992\\ 868\\ 744\\ 620\\ 496\\ 372\\ 248\\ 124\\ 0\\ -124\\ -248\\ -372\\ -496\\ -620\\ -744\\ -868\\ \end{array} $	
34 35 36 37 38 39 40 41 42 43 44 45 46	(FSA) (FSB) (FSC) (FS0) (FS1) (FS2) (FS3) VDD COMSA COMS1 COM1 COM2 COM3	3603 3603 3694	-796 -696 -596 -396 -296 -196 -73 63 199 323 447 571	88 89 90 91 92 93 94 95 96 97 98 99 100	SEG37 SEG38 SEG39 SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49	-992 -1116 -1240 -1364 -1488 -1612 -1736 -1860 -1984 -2108 -2232 -2356 -2480	
47 48 49 50 51 52 53 54	COM4 COM5 COM6 COM7 COM8 SEG1 SEG2 SEG3	3694 3472 3348 3224	695 819 943 1067 1191 1228 1228 1228	101 102 103 104 105 106 107 108	SEG50 SEG51 SEG52 SEG53 SEG54 SEG55 SEG56 SEG56 SEG57	-2604 -2728 -2852 -2976 -3100 -3224 -3348 -3472	1228

 (FS^{\ast}) : Being fuse adjusting pins, maintain them on floating state. CK pins $% S^{\ast}$: Should be VDD when not being used.

Р	AD	COOR	DINATES
No.	Name	Х	Y
109	SEG58	-3694	1191
110	SEG59	4	1067
111	SEG60		943
112	COM16		819
113	COM15		695
114	COM14		571
115	COM13		447
116	COM12		323
117	COM11		119
118	COM10		75
119	COM9		-49
120	COMS2		-173
121	SEGSA		-335
122	SEGSB		-459
123	SEGSC		-583
124	SEGSD	*	-707
125	SEGSE	-3694	-831

<SED122AD**>

Unit:	μm
-------	----

 (FS^{\ast}) : This is a fuse adjusting terminal. Set it to floating state. CK pins % Set it to VDD when not used.

SED1220

PAD	COOR	DINATES
No. Name	Х	Y
		-

DESCRIPTION OF PINS

Power Pins

Pin name	I/O	Description	Q'ty					
Vdd	Power supply	Connected to logic supply. Common with MPU power terminal Vcc.	1					
Vss	Power supply	W power terminal connected to system ground.						
V0, V1	Power supply	Multi-level power supply for liquid crystal drive.	6					
V2, V3		The voltage determined in the liquid crystal cell is resistance-						
V4, V5		divided or impedance-converted by operational amplifier, and the						
		resultant voltage is applied.						
		The potential is determined on the basis of VDD and the following						
		equation must be respected.						
		$V_{DD} = V_0 \ge V_1 \ge V_2 \ge V_3 \ge V_4 \ge V_5$						
		$VDD \ge VSS \ge V5 \ge VOUT$						
		When the built-in power supply is ON, the following voltages are						
		given to pins V1 to V4 by built-in power circuit:						
		$V_1 = 1/5 V_5$ (1/4 V ₅)						
		$V_2 = 2/5 V_5$ (2/4 V ₅)						
		$V_3 = 3/5 V_5$ (3/4 V5)						
		$V4 = 4/5 V_5$ (4/4 V5) voltage ratings in () are for optinal choices.						
Vs1	0	Power supply voltage output pin for oscillating circuit, and DC/DC	1					
		source. Don't connect this pin to an external load.						

LCD Power Circuit Pins

Pin name	I/O	Description	Q'ty							
CAP1+	0	Capacitor positive side connecting pin for boosting.	1							
		This pin connects the capacitor with pin CAP1								
CAP1-	0	Capacitor negative side connecting pin for boosting.	1							
		This pin connects a capacitor with pin CAP+.								
CAP2+	0	Capacitor positive side connecting pin for boosting.	1							
		This pin connects a capacitor with pin CAP2								
CAP2-	0	Capacitor negative side connecting pin for boosting.	1							
		This pin connects a capacitor with pin CAP2+.								
Vout	0	Output pin for boosting. This pin connects a smoothing capacitor	1							
		with VDD pin.								
Vr	I	Voltage regulating pin. This pin gives a voltage between VDD and	1							
		V5 by resistance-division of voltage.								

Pins for System Bus Connection

Pin name	I/O					Desc	riptior	<u>۱</u>					Q'ty
D7 (SI)	I	8-bit input	data I	bus.	These	pins	are cor	nnected t	o a 8	B-bit	or 16	bit	8
D6 (SCL)		standard MPU data bus.											
D5 ~ D0		When P/S = "Low", the D7 and D6 pins are operated as a serial data											
		input and a	a seria	al cloc	k inpι	ut resp	pective	у.					
		P/S RES	I/F	D7	D6	D5	D4	D3-D0		CS	A0	WR	
		"L" —		SI	SCL	_	_	OPEN		CS	A0	—	
		"H" "H"	"H"	D7	D6	D5	D4	D3-D0		CS	A0	E	
		"H" "L"	"H"	D7	D6	D5	D4	D3-D0		CS	A0	WR	
		"H" "L"	"L"	D7	D6	D5	D4	OPEN		CS	A0	WR	
		—: Indi	ugh " omme cates	OPEN ended	l" is a for no t can l	vailab vise-w	le, fixin ithstna	g the po ding cha er "H" or	racte	eristic			
A0	I	Usually, th	is pin	conn	ects th	ne lea	st sign	ficant bit	of th	ne M	PU a	ddress	1
		bus and id	entifie	es a da	ata co	mmar	nd.						
		0 : Indi	cates	that D	00 to [D7 are	e a con	nmand.					
		1 : Indi	cates	that D	00 to [D7 are	e displa	iy data.					
RES	Ι	In case of								orme	d by		1
		changing F							,				
		initializatio		-		-	-						
		A reset op				-	-	-			-		
		An interfac	•••		he 68	/80 se	ries M	PU is sel	ecte	d by	input	level	
		after initial											
		"L" :											
		"H" :											
CS	I	Chip selec	-		-	-	-		-			зу	1
		decoding a	an ado	dress	bus si	gnal.	At the	"Low" le	vel, t	this p	oin is		
		enabled.											
WR	I	<when co<="" td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></when>		-									
(=)								WR sign					1
(E)			The s	ignal	on the	e data	bus is	fetched a	at the	e rise	e of th	e WR	
		signal.			~~								
		<when co<="" td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>00</td><td></td></when>		-								00	
			-		s pin i	becom	nes an	enable c	IOCK	inpu	t of th	e 68	
P/S	1	series I This pin sv			veen	serial	data in	nut and i	naral	llel d	ata in	nut	1
	•												.
		P/S	Chi	p Sele	ct Da		nmand	Data		Sei	rial Cl	ock	
		"High"		CS		AC		D0~D	07		-		
		"Low"		CS		AC)	SI			SCL		
IF	1	Interface d	lata le	nath a	select	nin fo	r naral	lel data i	nnut				1
		Interface data length select pin for parallel data input. "High": 8-bit parallel input											
		"High": 8-bit parallel input "Low": 4-bit parallel input											
		When $P/S =$ "Low", connect this pin to VDD or Vss.											
СК	1	External in					2011 LO V	50 01 03					
UK I					••								

Liquid Crystal Drive Circuit Signals

Dynamic drive terminal (SED1220D**/1221D**/122AD**)

Pin name	I/O	Description	Q'ty
COM1~ COM24	0	Common signal output pin (for characters)	24
COMS1, CMOS2	0	Common signal output pin (except for characters) CMOS1, CMOS2: Common output for symbol display	2
SEG1~ SEG60	0	Segment signal output pin (for characters)	60
SEGS1, 2 4, 5	0	Segment signal output pin (except for characters) SEGS1, SEGS2: Segment output for signal output	4

Dynamic drive terminal (SED1222D**)

Pin name	I/O	Description	Q'ty
COM1~	0	Common signal output pin (for characters)	16
COM16	0	Common signal output pin (for characters)	10
COMS1,	0	Common signal output pin (except for characters)	2
CMOS2	0	CMOS1, CMOS2: Common output for symbol display	2
SEG1~	0	Segment signal sutput pip (for sharestors)	60
SEG60	0	Segment signal output pin (for characters)	60

Static drive terminal

Pin name	I/O	Description	Q'ty
COMSA	0	Common signal output pin (for icon)	1
SEGSA, B C, D, E F, G, H, I, J	0	Segment signal output pin (for icon) SEGSF, G, H, I, J (only SED122A)	5 to 10

Note: For the electrode of liquid crystal display panel to be connected to the static drive terminal, we recommend you to use a pattern in which it is separated from the electrode connected to the dynamic drive terminal. When this pattern is too close to the other electrode, both the liquid crystal display and electrode will be deteriorated.

FUNCTIONAL DESCRIPTION

MPU Interface

Selection of interface type

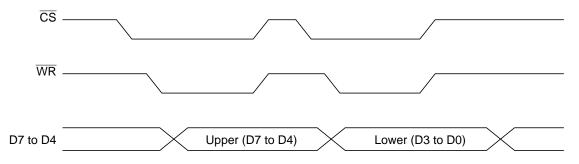
In the SED1220 Series, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting "High" or "Low" as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table 1.

					-		
P/S	Туре	CS	A0	WR	SI	SCL	D0~D7
"High"	Parallel Input	CS	A0	WR	—	—	D0~D7
"Low"	Serial Input	CS	A0	H, L	SI	SCL	

Table 1

Parallel Input

In the SED1220 Series, when parallel input is selected (P/S = "High"), it can be directly connected to the 80 series MPU bus or 68 series MPU bus, as shown in Table 2, if either "High" or "Low" is selected as RES pin polarity after a reset input, because the RES pin has an MPU select function.


Selection between 8 bits and 4 bits is performed by command.

RES input polarity	Туре	A0	WR	CS	D0~D7
↓ active	68 series	A0	Е	CS	D0~D7
↑ active	80 series	A0	WR	CS	D0~D7

Table 2

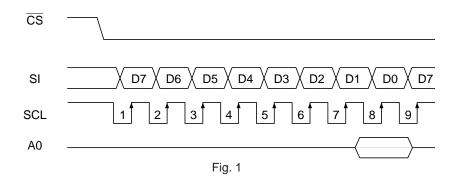
Interface with 4-bit MPU interface

When data transfer is performed by 4-bit interface (IF = 0), an 8-bit command, data and address are divided into two parts.

Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then perform writing.

Serial interface (P/S = "Low")

The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled in the ship selected status (CS = "Low").


When no chip is selected, the shift register and counter are reset to the initial status.

Serial data is input in the order of D7, D6 D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL). At the rising edge of the 8th serial clock, the serial data is converted into 8-bit parallel data and this data is processed. The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when A0 = "High", it is regarded as display data. When A0 = "Low", it is regarded as a command.

The A0 input is read in and identified at the rise of the $8 \times n$ -th clock of Serial Clock (SCL) after chip selection. Fig. 1 shows a timing chart of the serial interface.

Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length. We recommend the user to perform an operation check with a real machine.

We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.

Identification of data bus signals

The SED1220 series identifies data bus signals, as shown in Table 3, by combinations of A0 and \overline{WR} (E).

Common	68 series	80 series	Function
A0	E	WR	Function
1	1	0	Writing to RAM and symbol register
0	1	0	Writing to internal register (command)

Table 3

Chip select

The SED1220 series has a chip select pin (\overline{CS}). Only when \overline{CS} = "Low", MPU interfacing is enabled. In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is input regardless of the \overline{CS} status.

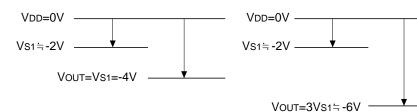
Power Circuit

This is a low-power-consumption power circuit that generates a voltage required for liquid crystal drive. The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.

The power circuit incorporated in the SED1220 Series is set for a small-scale liquid crystal panel, so that its display quality may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity. In this case, an external power supply must be used.

A power circuit function can be selected by power control command. With this, an external power supply and a part of the internal power supply can be used together.

	Amplifying	Voltage regulat-	Voltage	External	Amplifying
	circuit	ing circuit	follower	voltage input	system pin
	0	0	0	—	Per specification
Note 1	×	0	0	Vout	OPEN
Note 2	×	×	0	V5 = VOUT	OPEN
Note 3	×	×	×	V1, V2, V3, V4, V5	OPEN


Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open and give a liquid crystal drive voltage to the VOUT pin from the outside.

Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins open, connect between the V5 pin and VOUT pin, and give a liquid crystal drive voltage from the outside.

Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages V1, V2, V3, V4 and V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and VOUT pins open.

Voltage Tripler Circuit

If capacitors are connected between CAP+1 - CAP-1and CAP2+, CAP2- and Vss VOUT, VDD-Vss potential is negatively tripled and generated at VOUT terminal. When the voltage is boosted double, open CAP2+ and

Potential relationship of amplified voltage

connect CAP2- to VOUT terminal.

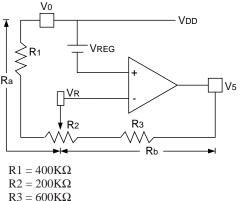
oscillation output.

At this time, the oscillating circuit must be operating

since the amplifying circuit utilize the signal from the

Voltage regulating circuit

Amplified voltage generated at VOUT outputs liquid crystal drive voltage V5 through the voltage regulation circuit.V5 voltage can be obtained from the expression ① below by adjusting the resistors Ra and Rb within the range of V5<VOUT.calculated by the following formula:

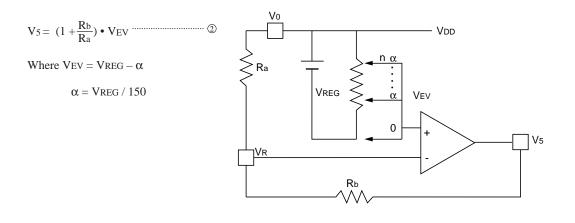

$$V_5 = (1 + \frac{R_b}{R_a}) \bullet V_{REG}$$

Where, VREG is the constant power supply within IC. VREG is maintained constantly at VREG = 2.0V.

Voltage regulation of V5 output is done by connecting to a variable register between VR, VDD and V5. It is recommended to combine fixed registers R1 and R3 with variable resistor R2 for fine adjustment of V5 voltage.

[Sample setting on R1, R2 and R3]

- R1 + R2 + R3 = 1.2 M ohm (decided from the current value I05 passed between VDD V5. Where, $I_{05} \le 5 \mu A$ is supposed).
- Variable voltage range provided by R2 is from -4V to -6V (to be decided considering charecteristics of the liquid crystal).
- Since VREG = 2.0V, if the electronic volume register is set at (0, 0, 0, 0, 0), followings are derived from above conditions and expression ①:

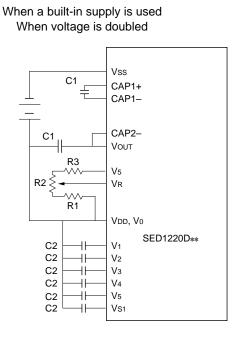

The voltage regulation circuit outputs VREG with the temperature gradient of approximately -0.04%/°C. Since VR terminal has high input impedance, anti-noise measures must be considered including use of shortened wiring distance and shield wire.

• Voltage Regulation Circuit Using Electronic Volume Function

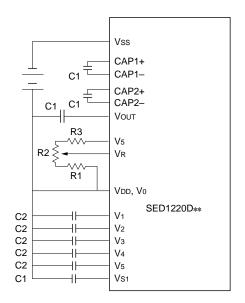
The electronic volume function allows to control the liquid crystal drive voltage V5 with the commands and thus to adjust density of the liquid crystal display. Liquid crystal drive voltage V5 can have one of 32 voltage values if 5-bit data is set to the electronic volume register.

When using the electronic volume function, you need to turn the voltage regulation circuit on using the supply control command.

[Sample constants setting when electronic volume function is used]

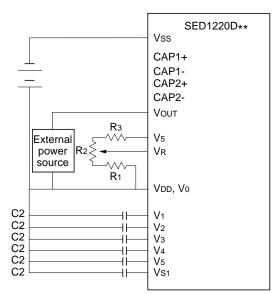


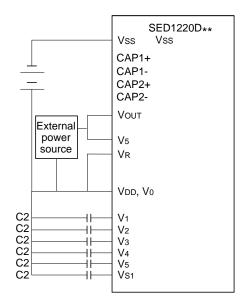
No.	Electronic volume register	а	V5
0	(0, 0, 0, 0, 0)	0	Large
1	(0, 0, 0, 0, 1)	1α	•
2	(0, 0, 0, 1, 0)	2α	•
3	(0, 0, 0, 1, 1)	3α	•
•	•	•	•
•	•	•	•
30	(1, 1, 1, 1, 0)	(n-1)α	•
31	(1, 1, 1, 1, 1)	nα	Small


When the electronic volume function is not used, select (0, 0, 0, 0, 0) for the electronic volume register.

Liquid crystal voltage generating circuit

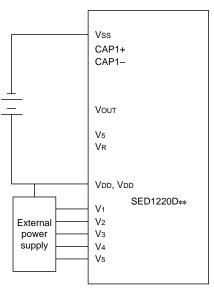
V5 potential is resistive divided within IC to produce V1, V2, V3 and V4 potentials required for driving the liquid crystal. V1, V2, V3 and V4 potentials are then subject to impedance conversion and provided to the liquid crystal drive circuit. The liquid crystal drive voltage is fixed to 1/5 (1/4) bias. The liquid crystal power terminals V1 – V5 must be externally connected with the voltage regulating capacitor C2.


When voltage is tripled


Reference setting values: C1: 0.1 - 4.7 μF C2: 0.1 μF

We recommend the user to set the optimum values to capacitors C1 and C2 according to the panel size watching the liquid crystal display and drive waveforms.

Example 2: When using the built-in power source (VC, VF, P) = (1, 1, 0)



Example 3: When using the built-in power source (VC, VF, P) = (0, 1, 0)

Reference setting values: C1: 0.47 - 4.7 µF We suggest you to determine the most appropriate capacitance values, C2: 0.1 - 4.7 µF fitting to the panel size, for respective capacitors C1 and C2 in consideration of the liquid crystal display and drive waveforms.

When a built-in supply is used

SED1220

Low Power Consumption Mode

SED1220 is provided with standby mode and sleep mode for saving power consumption during standby period.

• Standby Mode

Switching between on and off of the standby mode is done using the power save command.

In the standby mode, only static icon is displayed.

- 1. Liquid crystal display output
- COM1 ~ COM24, COMS1, COMS2 : VDD level SEG1 ~ SEG60, SEGS1, 2, 4, 5 : VDD level SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Can be turned on by static drives. Use the static icon RAM for controlling the static icon display done with SEGSA, B, C, D, E, COMSA.
- 2. DD RAM, CG RAM and symbol register Written information is saved as it is irrespective of on or off of the stand-by mode.
- 3. Operation mode is retained the same as it was prior to execution of the standby mode. The internal circuit for the dynamic display output is stopped.
- Oscillating circuit The oscillation circuit for the static display must be remained on.

• Sleep Mode

To enter the sleep mode, turning off the power circuit and oscillation circuit using the commands, and then execute power save command. This mode helps to save power consumption by reducing current to almost resting current level.

- Liquid crystal display output COM1 ~ COM24, COMS1, COMS2 : VDD level SEG1 ~ SEG60, SEGS1, 2, 4, 5 : VDD level SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Clear all the data of the static icon registers to "0".
- 2. DD RAM, CG RAM and symbol register Written information is saved at it is irrespective of on or off the sleep mode.
- 3. Operation mode mode is retained the same at it was prior to execution of the sleep mode. All internal circuits are stopped.
- Power circuit and oscillation circuit Turn off the built-in supply circuit and oscillation circuit using the power save command and supply control command.

Reset Circuit

Upon activation of the RES input, this LSI will be initialized.

	Initial State	
1.		control
1.	1	: Cursor off
		: Blink off
	$\mathbf{D} = 0$ $\mathbf{D} = 0$	
2		: Display off
Ζ.	Power save	
		: Oscillation off
~		: Power save off
3.		
	VC = 0	: Voltage regulation circuit off
	VF = 0	
	$\mathbf{P} = 0$: Amplifying circuit off
4.	System setting	
	N2, N1 = 0	: 2 lines
	$\mathbf{S} = 0$: Left-hand shift
	CG = 0	: "CGRAM" blank
5.	Electronic volu	ime control
	Address	: 28H
	Data	: (0, 0, 0, 0, 0)
6.	Static icon	
	Address	: 20H
	Data	: (0, 0, 0, 0, 0)
	Address	
	Data	: (0, 0, 0, 0, 0)
	Address	
		(0, 0, 0, 0, 0, 0)
	Address	
	Data	: (0, 0, 0, 0, 0)

As explained in the Section "MPU interface", the RES terminal connects to the reset terminal of the MPU and initialization is being effected together with the MPU. However, when the bus, port, etc. of the MPU maintains high-impedance for a certain duration of time after

resetting, make the resetting input to the SED1220 after the inputs to the SED1220 have become definite.

As the resetting signal, like explained in the Section "DC characteristics", active level pulses of minimum 10us or more should be used. Normal operation status can be obtained after 1us from the edge of the RES signal.

By making the RES terminal active, respective registers can be cleared and the aforesaid setting state can be obtained.

If initialization is not effected by the RES terminal when the supply voltage is applied, it may go into a state where cancellation is unworkable.

In case the built-in liquid crystal power circuit will not be used, it becomes necessary that the RES input be active when the external liquid crystal power is being applied.

COMMAND

Table 4 lists the commands. SED1220 identifies the data bus signal using different combinations of A0 and \overline{WR} (E). High speed command interpretation and execution are possible since only the internal timing is used.

Command Overview

Command type	Command name	A0	WR
Display control	Cusor Home	0	0
instruction	Display ON/OFF Control	0	0
Power control	Power Save	0	0
	Power Control	0	0
System set	System set	0	0
Address control	Address Set	0	0
instruction			
Data input	Data Write	1	0
instruction			

Instruction execution duration of dependents on the internal process time of SED1220, therefore it is necessary to provide a duration larger than the system cycle time (tCYC) between execution of two successive instruction.

• Description of Commands

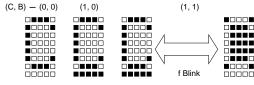
(1) Cursor Home

This command presets the address counter to 30H and moves the cursor, when it is present, to the first digit of the first line.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	*	*	*	*
							*:	Don	't Ca

(2) Display ON/OFF Control This command performs on or off of display and cursor setting.

Note: Symbols driven by COMSA and SEGSA – E must be controlled through the static icon RAM.


A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	С	В	*	D
D		= 0 1			lay o lay o				
В		= 0 1	•		or bl or bl				

Blink displays characters in black and white, alternately. The alternating display will be repeated with approx. 1 second interval.

С	= 0	: Display of cursor
	1	: Does not display

Following table shows relationship between B and C registers and the cursor.

С	В	Cursor display
0	0	Non-display
0	1	Non-display
1	0	Underbar cursor
1	1	Alternate display of display
		characters in black and white.
		The cursor position indicates the
		position of address
		•

The cursor position indicates the position of address counter.

Therefore, whenever moving the cursor, change the address counter value using the RAM address set command or the auto increment done by writing the RAM data.

ISelective flashing symbol display is possible by selecting (C, B) = (1, 0) and thus locating the address counter to the position of the symbol register through selecting (since the symbol is corresponding to the character at each 5 dots).

(3) Power Save

This command is used to controlling the oscillation circuit and setting or resetting the sleep mode.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	1	0	0	*	*	0	PS	
PS	= 0 : Power save off (reset) $1 : Power save on (set)$								re	
0		= 0	:		llatir	0	rcuit	off (stop	of

oscillation) 1 : Oscillating circuit on (oscilla tion)

 (4) Supply Control This command is used for controlling operation of the built-in power circuit.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	VC	VF	Р
Р		= 0 : Amplifying circuit off 1 : Amplifying circuit on							

Note: The oscillation circuit must be turned on for the amplitying circuit to be active.

VF	= 0 1	: Voltage follower off : Voltage follower on
VC	= 0 1	: Voltage regulation circuit off : Voltage regulation circuit on

(5) System Set

This command is used for selecting display line, common shift direction and use/non-use of CR RAM.

When power on or resetting is done, execute this command first.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	1	0	N1	N2	S	CG

*: Don't Care

N2, N1	= 0, 0 : 2 lines
N2, N1	= 0, 1 : 3 lines

S	= 0	: COM left shift

- = 1 : COM right shift
- $\begin{array}{rcl} CG & = 0 & : \text{ Use } CG \text{ RAM} \\ 1 & : \text{ Does not use } \text{ RAM} \end{array}$

(6) RAM Address Set

This command sets addresses to write data into the DD RAM, CG RAM and symbol register in the address counter.

When the cursor is displayed, the cursor is displayed at the display position corresponding to the DD RAM address set by this command.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1		A	\DD	RES	S		

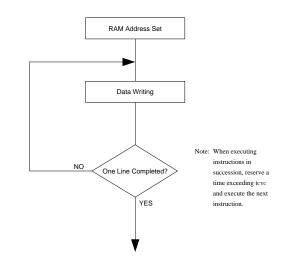
- ① The settable address length is ADDRESS = 00H to 7FH.
- ② Before writing data into the RAM, set the data write address by this command. Next, when data is written in succession, the address is automatically incremented.

RAM Map

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
00H			CGF	R A M	(0 0	H)		-		С	GR	A M (01H)			-
10H			CGF	R A M	(0 2	H)		Ι		С	GR	A M (03H)			-
20H	SI							Ι	EV	Test			_			-
30H			DD	RAM	line 1			Fo	r sign	als					Unuse	ed
40H			DD	RAM	line 2	2									"	
50H			DD	RAM	line 3	3									"	
60H			Sy	mbol	regist	er									"	
70H[Sy	mbol	regist	er									"	
					_			:U	Inuse	d						

For signals :Output from SEGS1 to SEGS2, SEGS4, SEGS5 For symbol register :Output from COMS1 to COMS2.

SI :Static icon register


EV :Electronic volume register

Test :Test register (Do not use)

(7) Data Write

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0				DA	ΤA			

- ① This command writes data the DD RAM, CG RAM or symbol register.
- ② This command automatically increases the address counter by +1, thus enabling continuous writing of data.
- <Example of Data Writing>
 - Following figures illustrates an example of continuous writing of one line data to DD RAM.

					Сс	ode					
Command	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Cursor Home	0	0	0	0	0	1	*	*	*	*	Moves the cursor to the home position.
(2) Display ON/OFF Control	0	0	0	0	1	1	С	В	*	D	Sets cursor ON/OFF (C), cursor blink ON//OFF (B), and display ON/OFF (D). C = 1 (cursor ON) 0 (cursor OFF), B = 1 (blink ON) 0 (blink OFF), D = 1 (display ON) D = 0 (display OFF)
(3) Power Save	0	0	0	1	0	0	*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (0). PS = 1 (power save ON) 0 (power save OFF), 0 = 1 (oscillating circuit ON) 0 (oscillating circuit OFF)
(4) Power Control	0	0	0	1	0	1	0	VC	VF	Р	Sets voltage regulating circuit ON/OFF and boosting circuit ON/OFF (P). VC = 1 (voltage regulating circuit ON) 0 (voltage regulating circuit OFF) VF = 1 (voltage follower ON) 0 (voltage follower OFF), P = 1 (boosting circuit ON) 0 (boosting circuit OFF)
(5) System Set	0	0	0	1	1	0	N2	N1	S	CG	Sets the use or non-use of CG RAM and shifting direction of display line (N1, N2) and COM CG = 1 (use of CG RAM), $0 =$ (Does not use CG RAM), M2, N1 = 0, 0 (2 lines) 0, 1 (3 lines). S = 0 (left shift), 1 (right shift).
(6) RAM Address Set	0	0	1			AD	DR	ESS			Sets the DD RAM, CG RAM or symbol register address.
(7) RAM Write	1	0				DA	ТА				Writes data into the DD RAM, CG RAM or symbol register address.
(8) NOP	0	0	0	0	0	0	0	0	0	0	Non-operation command
(9) Test Mode	0	0	0	0	0	0	*	*	*	*	Command for IC chip test. Don't use this command.

Table 4 SED1220 Series Command List

CHARACTER GENERATOR

Character Generator ROM (CG ROM)

Character Generator ROM (CG ROM) SED1220 cntains the character generator ROM (CG ROM) consisted of up to 256 types of characters. Character size is 5×8 dots.

Tables 5 though 7 show the SED1220** character code. Concerning the 4 characters from 00H through 03H, the system command selects on which of CG ROM and CG RAM they are to be used.

SED1220 CG ROM is mask ROM and compatible with customized ROM. Contact us for its use in your system. Product name of modified CG ROM is defined as below:

(Example) S E D 1 2 2 0 D $\underline{0}_{B}$

Digit for CG ROM pattern change

SED1220DA*

		0	1	2	3	4	5	L 6	ower 4 E 7	Bit of Cod	le 9	A	В	С	D	E	F
	0																
	1																
	2																
	3																
	4																
	5																
	6																
Higher 4 Bit of Cord	7																
Higher 4	8																
	9																
	A																
	в																
	с																
	D																
	E																
	F																

SED1220DB*

		0	1	2	2	4	5	6	ower 4 E.	Bit of Cod		•	В	С	 E	F
		-			3	4	-				9			-		
	0															
	1															
	2															
	3															
	4															
	5			_												
	6															
t of Cord	7															
Higher 4 Bit of Cord	8															
	9															
	A															
	в															
	с															
	D															
	E															
	F															

SED1220DG*

		0	1	2	2	4	E		ower 4 E 7	Bit of Cod		•	P	<u> </u>	D		F
		0	1	2	3	4	5	6		8	9	A	В	c 		E	
	0																
	1																
	2																
	3																
	4																
	5																
	6																
4 Bit of Cord	7																
Higher 4 Bit	8																
	9																
	A																
	в																
	с																
	D																
	E																
	F																

Character Generator RAM (CG ROM)

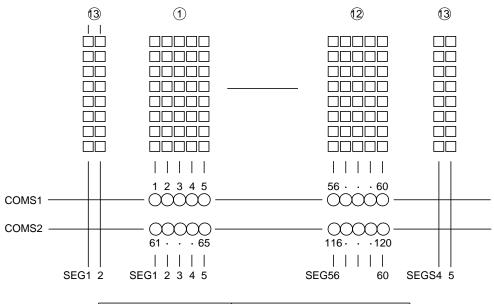
CGRAM contained in SED1220 enables user programming of character patterns for display signals with higher degrees of freedom.

When using CGRAM, select it using the system command.

Capacity of CGRAM is 160 bits and accepts registration of any 4.5×8 dots patterns.

Following shows relationship between the CGRAM characters, CGRAM addresses and character code.

Character code	RAM address		C	GRA	M da	ita (c	hara	cter p	oatte	rn)	Character display	Signal displa	ay
			D7							D0	SEG	SEGS	
00H	00H~07H	0	*	*	*	0	1	1	1	1		124	5
02H	10H~17H	1	*	*	*	1	0	0	0	0			-
		2	*	*	*	1	0	0	0	0			4
		3	*	*	*	0	1	1	1	1			
		4	*	*	*	0	0	0	0	1			
		5	*	*	*	0	0	0	0	1			
		6	*	*	*	1	1	1	1	0			
		7	*	*	*	0	0	0	0	0			
01H	08H~0FH	8	*	*	*	0	0	1	0	0			
03H	18H~1FH	9	*	*	*	0	0	1	0	0			
		Α	*	*	*	0	1	1	1	0			
		В	*	*	*	0	1	1	1	0			
		С	*	*	*	0	1	1	1	0			
		D	*	*	*	1	1	1	1	1			
		Е	*	*	*	0	0	0	0	0			
		F	*	*	*	0	0	0	0	0			
			Ū	nuse	d	С	harad	cter o	lata				
			-			-	1:1	Displ	ay				
							0:	Non-	displ	ay			


It is possible to set a 5×8 character size in this system. In this case, use the *7H/*FH RAM. Note that the *7H/*FH data is inverted when a under-bar cursor is used.

Symbol Register

SED1220 contains the symbol register which enable individual symbol setting for displaying on the screen.

Capacity of the symbol register is 120 bits and is capable of displaying up to 120 symbols.

Following shows relationship between the symbol register display patterns, RAM addresses and written data.

RAM address				S	Symbo	ol Bit	s				
RAM address		D7							D0		
	0	*	*	*	1	2	3	4	5		
60H~6BH	1	*	*	*	6	7	8	9	10		
0011~0011	:	:									
	В	*	*	*	56	57	58	59	60		
	0	*	*	*	61	62	63	64	65		
70H~7BH	1	*	*	*	66	67	68	69	70		
1011-1011	:					:					
	В	*	*	*	116	117	118	119	120		

Note: When the symbol is 1.5 times or more than the character, it is recommended to drive it using both COMS1 and COMS2.

Static Icon Ram

SED1220 contains the static icon RAM for displaying the static icons in addition to the dynamic icons. Capacity of static icon RAM is 10 bits (SED1220/1221/ 1222) or 20 bit (SED122A) and is capable of displaying

< SEGSA, B	, C, D, E >	_								
Function	RAM address			Sta	atic io	con c	lata			Display
FUNCTION	RAIN address	D7							- D0	SEGSABCDE
Display	20H	*	*	*	0	0	1	1	1	
On/Off										
Blink	21H	*	*	*	1	0	0	0	1	
On/Off										f BLINK

< SEGSA, B, C, D, E >

up to 5 icons (SED1220/1221/1222) or 10 icons (SED122A).

Following shows relationship between the static icons functions, static icon RAM addresses and written data.

< SEGSF, G, H, I, J >

Function	RAM address			Sta	atic io	con c	lata			Display
T UNCLION	INAM address	D7							D0	SEGSFGHIJ
Display On/Off	22H	*	*	*	0	0	1	1	1	
Blink On/Off	23H	*	*	*	1	0	0	0	1	f BLINK

*: Blank

1: Display or blink on

0: Display or blink off

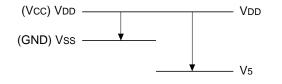
fblink: 1–2 Hz

Electronic Volume RAM (register)

SED1220 contains the electronic volume function for controlling the liquid crystal drive voltage V5 and density of liquid crystal display. The electronic volume function enables to select one of 32 voltage status of the liquid

crystal drive voltage V5 by writting 5-bit data to the electronic volume RAM.

Following shows relationship between RAM addresses set by the electronic volume and written data.


Function	RAM address		El	ectro	nic v	olun	ne da	ata		Condi-	Vev		
1 unction	NAM address	D7							D0	tion	VEV		
Electronic volume data	28H	*	*	*	0	0	0	0	0	0	Vreg-0		
		*	*	*	0	0	0	0	1	1	Vreg-α		
	-			*	*	*	0	0	0	0	0	2	Vreg-2a
							:			:			
							:			:			
		*	*	*	1	1	1	0	1	29	Vreg-29α		
		*	*	*	1	1	1	1	0	30	Vreg-30a		
		*	*	*	1	1	1	1	1	31	Vreg-31α		
	29H	*	*	*	*	*					For testing		

* : Blank

Note : Do not use the address "29H". It is for testing $\alpha = V_{REG}/150$

ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit
Power supply voltage	(1)	Vss	-6.0~+0.3	V
Power supply voltage	(2)	V5, Vout	-7.0~+0.3	V
Power supply voltage	(3)	V1, V2, V3, V4	V5~+0.3	V
Input voltage		Vin	Vss-0.3~+0.3	V
Output voltage		Vo	Vss-0.3~+0.3	V
Operating temperature	э	Topr	-30~+85	°C
Storage temperature	TCP	T _{str}	-55~+100	°C
	Bare chip	• Str	-65~+125	U

- Notes: 1. All the voltage values are based on VDD = 0 V.
 - 2. For voltages of V1, V2, V3 and V4, keep the condition of $VDD \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$ and $VDD \ge VSS \ge V5 \ge VOUT$ at all times.
 - 3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction. In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the reliability of the LSI.

DC CHARACTERISTICS

VDD = 0 V, Vss = -3.6 V to -2.4 V, Ta = -30 to $85^{\circ}C$ unless otherwise specified.

							•				
	Item		Symbol		Con	dition	min	typ	max	Unit	Applicable pin
Power	Operat	able	Vss				-3.6	-3.0	-2.4	V	Vss
supply	Data re	etain	1				-3.6		-2.0		*1
voltage (1)	voltage	<u>;</u>									
Power	Operat	able	V5				-7.0		-4.0	V	V5 *2
supply	Operat	able	V1, V2				0.6×V5		Vdd	V	V1, V2
voltage (2)	Operat	able	V3, V4				V5		0.4×V5	V	V3, V4
High-level ir	nput volt	age	VIHC				0.2×Vss		Vdd	V	*3
Low-level in	put volta	age	VILC				Vss		0.8×Vss	V	*3
Input leakag	je currei	nt	ILI	Vin :	= VDD or	Vss	-1.0		1.0	μA	*3
LC driver O	N resista	ance	Ron	Ta=	25°C	V5=-7.0V		20	40	KΩ	COM,SEG
				ΔV=	0.1V						*4
Static currer	nt consu	Imption	Iddq					0.1	5.0	μA	Vdd
Dynamic cu	rrent	Idd	Display s	tate	V5 = -6	V without load			80	μA	Vdd *5
consumption	n		Standby s	state	Oscillati	on ON, Power			20	μA	Vdd
					OFF, Vs	SS = -3V					
					without I	load					
			Sleep sta	te	Oscillati	on OFF, Power			5	μA	Vdd
					OFF, Vs	SS = -3.0V					
			Access st	tate	fcyc=200)KHz,			500	μA	Vdd *6
					Vss = -3	3.0V					
Input pin ca	pacity		Cin	T	a=25°C	f=1MHz		5.0	8.0	pF	*3
Frame frequ	lency		ffr	T	a=25°C	Vss=-3.0V	70	100	130	Hz	*10

Frame frequency	1 fFR	Ta=25°C Vss=-3.0V	/0	100	130	HZ	^10
External clock frequency	fck	Display of 2 lines		23.4		KHz	*10 *11
	fck	Display of 3 lines		33.8		KHz	*10 *11

Reset time	tR	1.0		μs	*7
Reset pulse width	trw	10		μs	*8
Reset start time	tres	50		ns	*8

Dynamic system

ply	Input voltage	Vs1		-2.3	-2.1	-1.9	V	*9
supply	Amplified voltage	Vout	When voltage is tripled	-6.9	-6.3	-5.7	V	Vout
power	output voltage							
	Voltage follower	V 5		-7.0		-4.0	V	
lt-in	operating voltage							
Buil	Reference voltage	Vreg	Ta = 25°C	-2.06	-2.0	-1.94	V	

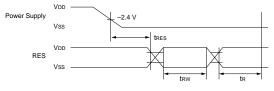
*1: A wide operating voltage range is guaranteed but an abrupt voltage variation in the access status of the MPU is not guaranteed.

- *2: When the voltage is Tripled, care must be paid to supply the voltage VSS so that operating voltage of VOUT and V5 may not be exceeded.
- *3: D0 ~ D5, D6 (SCL), D7 (SI), A0, RES, CS WR (E), P/S, IF
- *4: This is a resistance value when a voltage of 0.1 V is applied between output pin SEGn, SEGSn, COMn or COMSn, and each power pin (V1, V2, V3 or V4). It is specified in the range of operating voltage (2).

 $Ron = 0.1 V / \Delta I$

(Δ I: Current flowing when 0.1 V is applied between the power and output)

*5: Character "


display. This is applicable to the

case where no access is made from the MPU and the built-in power circuit and oscillating circuit are in operation.

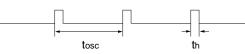
*6: Current consumption when data is always written by fcyc.

The current consumption in the access state is almost proportional to the access frequency (fcyc). When no access is made, only IDD (I) occurs.

- *7: tR (reset time) indicates the internal circuit reset completion time from the edge of the RES signal. Accordingly, the SED1220 usually enters the operating state after tR.
- *8: Specifies the minimum pulse width of the RES signal. It is reset when a signal having the pulse width greater than tRW is entered.

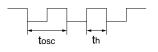
All signal timings are based on 20% and 80% of Vss signals

*9: When operating the boosting circuit, the power supply Vss must be used within the input voltage range.

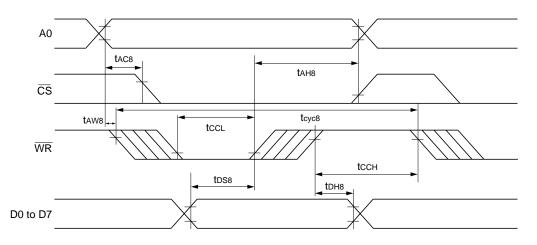

*10: The fosc frequency of the oscillator circuit for internal circuit drive may differ from the fBST boosting clock on some models. The following provides the relationship between the fOSC frequency, fBST boosting clock, and fFR frame frequency.

 $fOSC = (No. of digits) \times (1/Duty) \times fFR$ $fBST = (1/2) \times (1/No. of digits) \times fOSC$

*11: When performing the operations using an external clock, not taking advantage of the built-in oscillation circuit, input the waveforms indicated below. Meanwhile, while using an external clock but when clock inputs are not being made, fix it to "H". (Normal High)

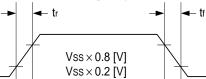

<Incase the external clock = fosc>

- Duty = (th/tosc) × 100 = 20 ~ 30%
- fosc = 1/tosc

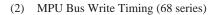

- <Incase the external clock = $4 \times \text{fosc}$ >
- Duty = (th/tosc) × 100 = 50%

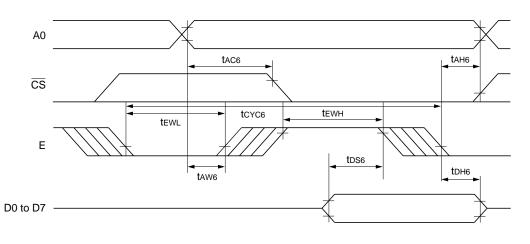
TIMING CHARACTERISTICS

(1) MPU Bus Write Timing (80 series)


 $[Ta = -30 \text{ to } 85^{\circ}C, Vss = -3.6 \text{ V to } -2.4 \text{ V}]$

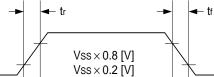
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	tah8	Every timing is specified	30	-	ns
Address setup time		tAW8	on the basis of 20% and	60	-	ns
CS setup time		tAC8	80% of Vss.	0	_	ns
System cycle time	WR	tCYC8		650	—	ns
Write "L" pulse width (WR)		tCCL		150	-	ns
Write "H" pulse width (WR)		t CCH		450	_	ns
Data setup time	D0 ~ D7	tDS8		100	-	ns
Data hold time		tDH8		50	_	ns


$[Ta = -30 \text{ to } 85^{\circ}\text{C}, \text{ Vss} = -3.3 \text{ V to } -2.7 \text{ V}]$


				0 0, 100 -		
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, $\overline{\text{CS}}$	tah8	Every timing is specified	10	_	ns
Address setup time		tAW8	on the basis of 20% and	60	_	ns
CS setup time		tAC8	80% of Vss.	0	_	ns
System cycle time	WR	tCYC8		500	_	ns
Write "L" pulse width (WR)		tCCL		100	_	ns
Write "H" pulse width (WR)		tссн		350	_	ns
Data setup time	D0 ~ D7	tDS8		100	_	ns
Data hold time		tDH8		20	_	ns

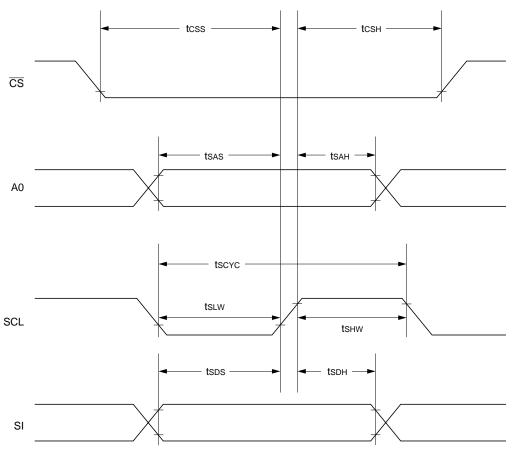
*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25ns (excluding RES input).

*2: tCCL is specified based on an overlap period of $\overline{\text{CS}}$ and $\overline{\text{WR}}$ "L" levels.


 $[Ta = -30 \text{ to } 85^{\circ}C, Vss = -3.6 \text{ V to } -2.4 \text{ V}]$

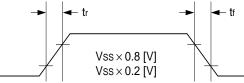
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address setup time	A0, <u>CS</u>	tAW6	Every timing is specified	60	_	ns
Address hold time		tAH6	on the basis of 20% and	30	-	ns
CS setup time		tAC6	80% of Vss.	0	_	ns
System cycle time	WR	tCYC6		650	_	ns
Enable "L" pulse width (WR)		tEWL		150	_	ns
Enable "H" pulse width (WR)		tewh		450	—	ns
Data setup time	D0 ~ D7	tDS6		100	_	ns
Data hold time		tDH6		50	_	ns

$[Ta = -30 \text{ to } 85^{\circ}C, \text{ Vss} = -3.3 \text{ V to } -2.7 \text{ V}]$


Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address setup time	A0, CS	tAW6	Every timing is specified	60	_	ns
Address hold time		tAH6	on the basis of 20% and	10	_	ns
CS setup time		tAC6	80% of Vss.	0	_	ns
System cycle time	WR	tCYC6		500	_	ns
Enable "L" pulse width (WR)		tEWL		100	_	ns
Enable "H" pulse width (WR)		tewh		350	_	ns
Data setup time	D0 ~ D7	tDS6		100	_	ns
Data hold time		tDH6		20	_	ns

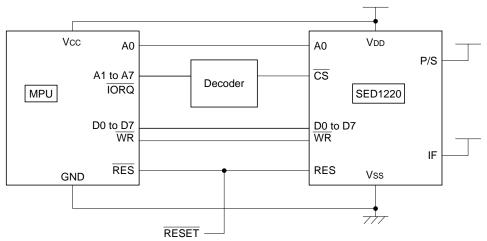
*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25ns (excluding RES input).

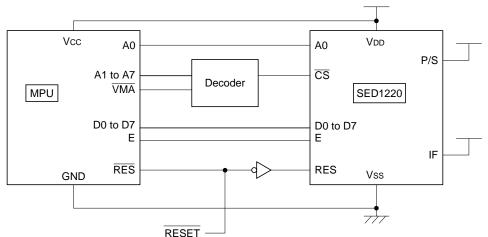
*2: tEWH is specified based on an overlap period of CS "L" and E "H" levels.


(3) Serial Interface

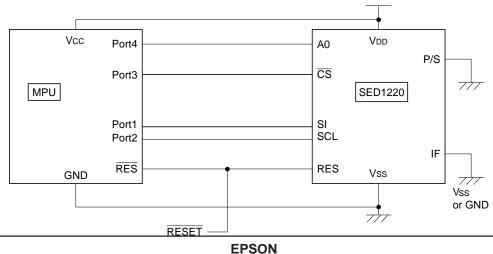
 $[Ta = -30 \text{ to } 85^{\circ}\text{C}, \text{ Vss} = -3.6 \text{ V to } -2.4 \text{ V}]$

ltem	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tscyc	Every timing is specified	1000		ns
SCL "H" pulse width		tshw	on the basis of 20% and	300		ns
SCL "L" pulse width		tsLW	80% of Vss.	300		ns
Address setup time	A0	tsas		50		ns
Address hold time		t SAH		300		ns
Data setup time	SI	tSDS		50		ns
Data hold time		t SDH		50		ns
CS-SCL time	CS	tcss		150		ns
		tCSH		700		ns

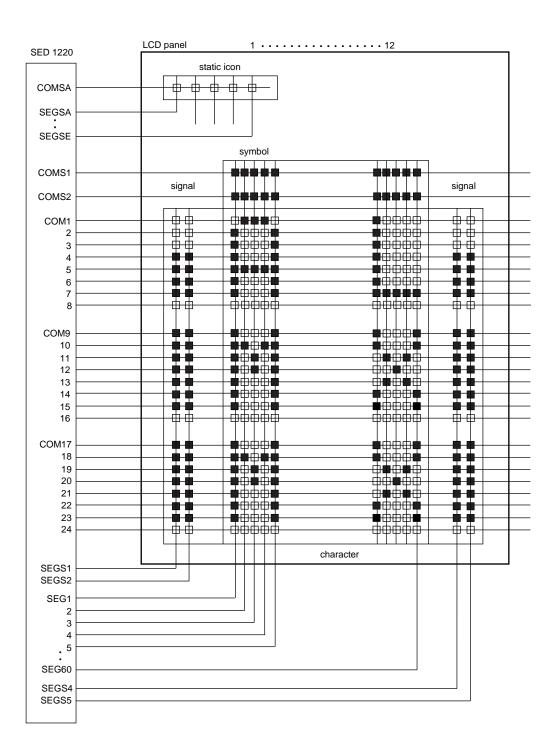

*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25ns (excluding RES input).

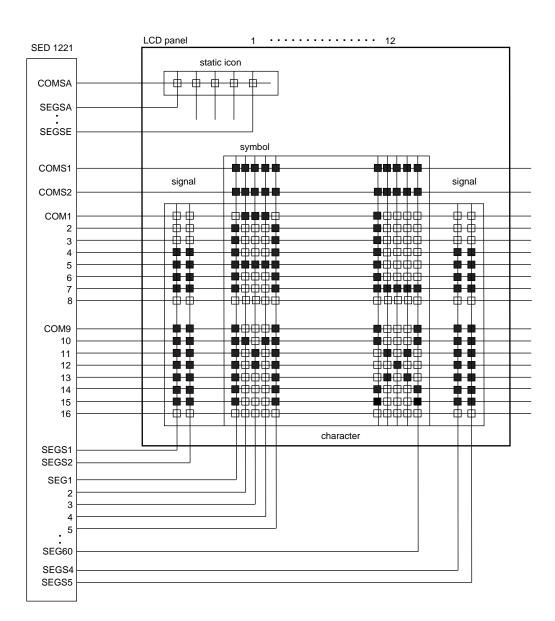

MPU INTERFACE (REFERENCE EXAMPLES)

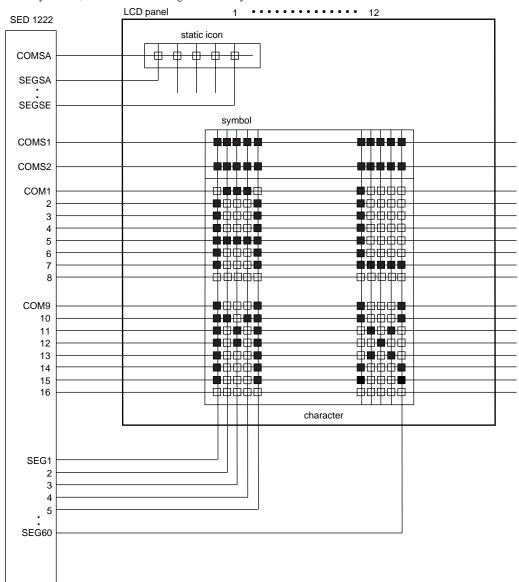
The SED1220 Series can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the SED1220 Series can be operated by less signal lines.


80 Series MPU

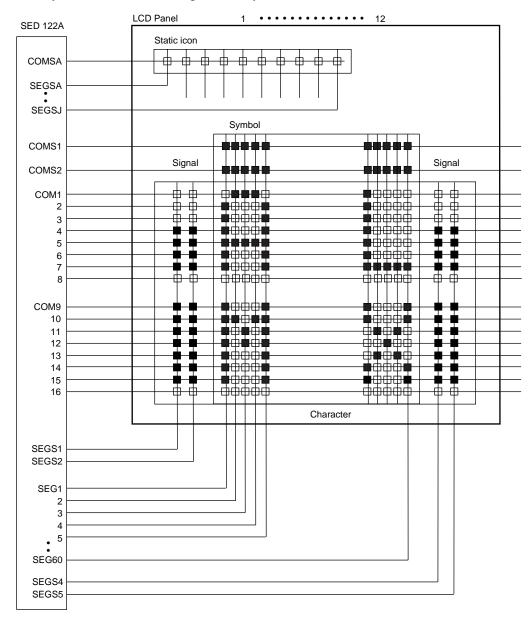
68 Series MPU


Serial Interface

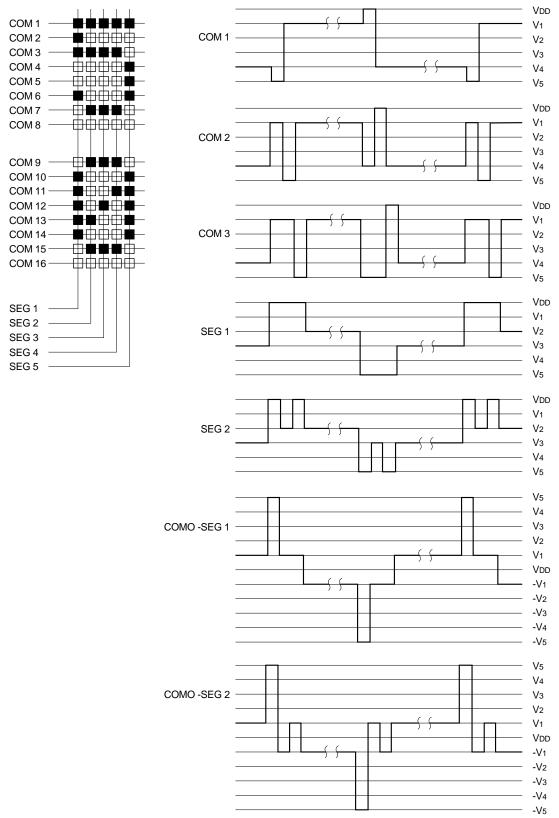

4-37


INTERFACE TO LCD CELLS (REFERENCE)

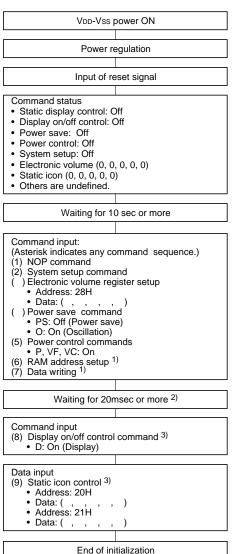
12 columns by 3 lines, 5×8 -dot matrix segments and symbols



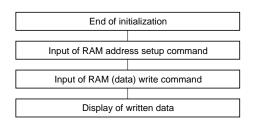
12 columns by 2 lines, 5×8 -dot matrix segments and symbols


12 columns by 2 lines, 5×8 -dot matrix segments and symbols

12 columns by 2 lines, 5×8 -dot matrix segments and symbols


4-41

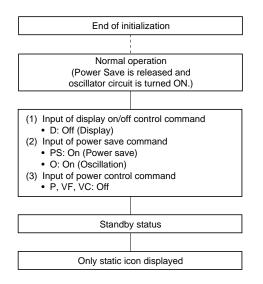
LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS)



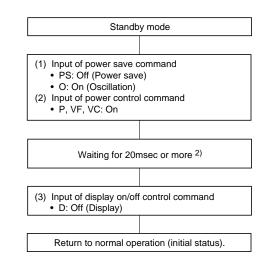
Instruction Setup Example (Reference Only)

(1) Initial setup

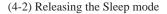
(2) Display mode

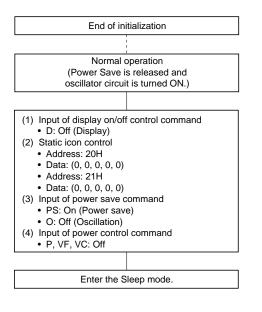


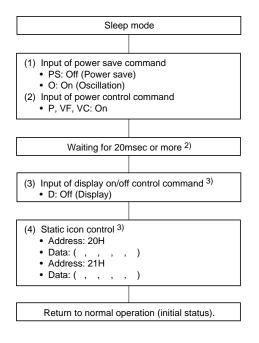
- Notes 1) Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area must satisfy the following conditions (for RAM clear).
 - DDRAM: Write the 20H data (character code).
 - CGRAM: Write the 00H data (null data).
 - Symbol register: Write the 00H data (null data).


As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not, unexpected display may result.

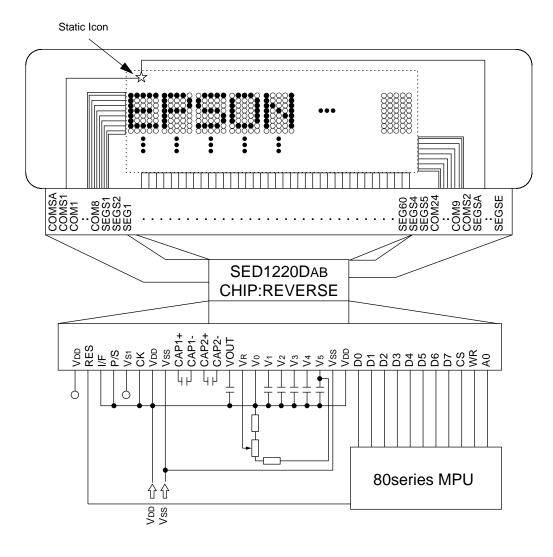
 Since it is specified based on rise characteristics of the booster, power control and voltage follower circuits, time to be set differs depending on external capacity. Be sure to set it after the external capacity is confirmed.


3) A display of the dynamic drive series is turned on when the on command is input and the static icon is turned on using the static icon control command. To turn both on at the same time when the display is turned on, execute display on/off command and static icon control within 1 frame period. (3-1) Selecting the Standby mode




(3-2) Releasing the Standby mode

(4-1) Selecting the Sleep mode



Instruction Setup Example of SED1220 series

- (1) Initial setup
- (2) display ON "EPSON"
- (3) Display ON the Icon
- (4) Standby Mode sequence
- (5) Releasing the Standby Mode sequence

<Diagram of SED1220Txx and LCD Panel>

(1) Initial setup

(1.1) VDD-VSS Power ON

(1.2) Power regulation

(1.3) Input of RESET signal

(1.4) Command Status

- Display ON/OFF :OFF
- Power save :OFF
- :OFF • Power control
- System reset :OFF
- Electronic Volume :(0, 0, 0, 0, 0) :OFF
- Static display control
- Others are undefined.

(1.5) Waiting for 10µ sec or more

(1.6) Command Input: ((*) indicates any command sequence.) (a) System Setup command: CGRAM→Not use, 3lines, COM Left shift

ſ	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	1	1	0	0	1	0	0

(*) Electronic volume resister setup: Data \rightarrow (0, 0, 0, 0, 0, 0)

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0

(*) Power save command: $PS \rightarrow 0, 0 \rightarrow 1$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0/1	0/1	1	0

(d) Power Control command: P, VF, VC \rightarrow 1

ſ	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	1	0	1	0	1	1	1

(e) (f) RAM address setup, Data writing

• RAM address setup: Set address is 30H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	1	0	0	0	0

• Data writing: All data→20H	(for 1 Line)
------------------------------	--------------

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0

• RAM address setup: Set address is 40H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	0	0	0	0	0	0

• Data writing: All data \rightarrow 20H (for 2 line)

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0

• RAM address setup: Set address is 50H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	0	1	0	0	0	0

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0

• Data writing: All data \rightarrow 20H (for 3 Line)

• End of Initialization

(2) Display ON "EPSON"

(2.1) RAM address setup command: 30H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	1	0	0	0	0

(2.2) Data writing command: Writing "EPSON"

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	
1	0	0	1	0	0	0	1	0	1	E: 45H
1	0	0	1	0	1	0	0	0	0	P: 50H
1	0	0	1	0	1	0	0	1	1	S: 53H
1	0	0	1	0	0	1	1	1	1	O: 4FH
1	0	0	1	0	0	1	1	1	0	N: 4EH

(2.3) Waiting for 20ms or more

(2.4) Display ON/OFF control command: B, C \rightarrow 0, D \rightarrow 1

1	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	1	1	0	0	0	1

Display ON 5×7 Dots "EPSON"

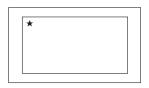
EPSON		

(3) Display ON The Icon: Valid in Standby mode only (3.1) Display ON/OFF command: D→OFF

[A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	1	1	0	0	0	0

(3.2) Static display control command: 1 ~ 2Hz Blink

A	0	WR	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	1	0	1	0	0	0	0	0
	1	0	0	0	0	1	0	0	0	0
	0	0	1	0	1	0	0	0	0	1
	1	0	0	0	0	1	0	0	0	0


(3.3) Power save command: PS \rightarrow ON, $0\rightarrow$ ON

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0/1	0/1	1	1

(3.4) Power control commands: P, VF, VC→OFF

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	0	0	0

Display ON the Icon

(4) Releasing the Standby Mode

(4.1) Power save command: $PS \rightarrow 0, 0 \rightarrow 1$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0/1	0/1	1	0

(4.2) Power control commands: P, VF, VC \rightarrow 1

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	1	1	1

(4.3) Waiting for 20ms or more

(4.4) Display ON/OFF command: $D \rightarrow 1$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	0	0	1

END of Releasing the Standby mode

Option List

SED1220 provides the optional functions as described in the following. Being adaptable to the customer's optional demand, contact the Business Department of our company when installed.

• Our product name corresponding to a customer's option is defined as shown below:

(Example) SED1220D \underline{XB}

pad product) or B (metal bump product)

Option corresponding digit

Machine type: 0 (12 digits \times 3 lines) or 1 (12 digits \times 2 lines)

1. Specification of Character Generator ROM (CGROM)

SED1220 integrates a character generator ROM which can generate a maximum of 256 type characters. The size of these characters is composed of 5×7 (8) dots.

Being a mask ROM, the SED1220 CGROM is adaptable to the character generator ROM exclusive for the customer, too.

For our standard CGROMs, refer to the Character Fonts Table.

2. Specification of Liquid Crystal Driver Voltage Bias Value.

SED1220 integrates a liquid crystal diver voltage generator circuit. Its 5-volt potential is divided into resistance inside of IC to generate 1-V, 2-V, 3-V or 4-V potential as required for the liquid crystal driver. Further, the 1-V, 2-V, 3-V or 4-Vpotential is converted into impedance by a voltage follower to be supplied to the liquid crystal driver circuit.

Either 1/5 or 1/4 bias value can be selected as demanded by the customer.

Our standard bias value is preset to 1/5.

3. Specification of Reference Voltage of Liquid Crystal Driver Voltage Regulation Circuit.

SED1220 integrates a voltage regulation circuit using a booster voltage as its power supply to generate 5V for the liquid crystal driver via the voltage regulation circuit.

The voltage regulation circuit integrates a reference voltage regulator VREG.

The customer can select a specification of using either the internal reference voltage or external Vss reference voltage.

Our standard specification is preset to the internal reference voltage.

- Power Supply to Booster Circuit SED1220 integrates a booster circuit. The customer can select a specification of using either the regulator output Vs1 or Vss as the supply voltage to the booster circuit. Our standard specification is preset to the regulator output Vs1.
- 5. External Clock Specifications

SED1220 integrates an external clock terminal and there are two clock specifications, f and $4 \times f$ oscillation.

Either of them can be selected on your request.

	Internal oscillation	External clock f osc.	External clock 4×f osc.
Standard	0	0	×
Optional	0	×	0

The standard external clock specification is set to fosc.

 Reset Signal Input Polarity Specifications SED1220 inputs reset signal from the reset terminal using edge detection and I/F specification 80/68 series can be selected according to this signal level. RES input polarity can also be selected on your request.

RES input	Туре				
polarity	Standard	Optional			
	68 series	80 series			
Lt	80 series	68 series			

 \square is set to the 68 series and \square to the 80 series as the standard RES input polarities.

7. Pad Layout Specifications of COMS1 Symbol Terminal

On SED1220, pad layout of COMS1 symbol terminal can be changed. COMS1 pad layout can be selected on your request.

	Standard	Optional
Pad No	Pad Name	Pad Name
65	COMS1	COM1
66	COM1	COM2
67	COM2	COM3
68	COM3	COM4
69	COM4	COM5
70	COM5	COM6
71	COM6	COM7
72	COM7	COM8
73	COM8	COMS1

SED1225 Series LCD Controller/Drivers

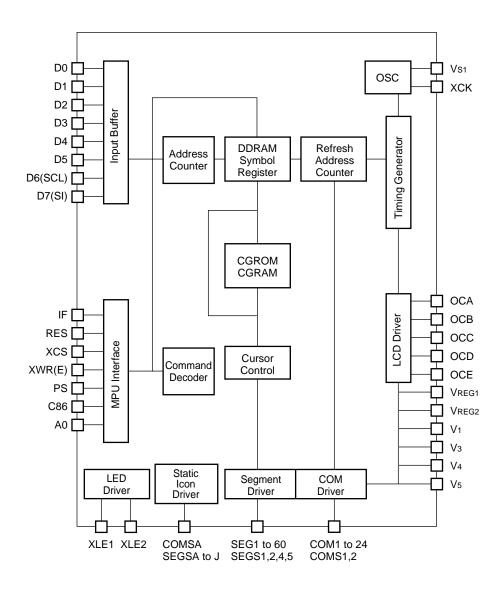
Technical Manual

Contents

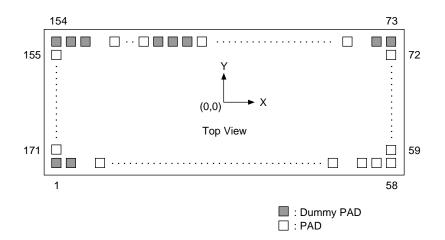
OUTLINE	
FEATURES	
BLOCK DIAGRAM	
PIN ASSIGNMENT	
PIN DESCRIPTION	
FUNCTION DESCRIPTION	
COMMAND	5–13
COMMAND LIST	5–16
BUILT-IN MEMORIES	5–17
MAXIMUM ABSOLUTE RATINGS	5–25
DC CHARACTERISTICS	5–26
SIGNAL TIMING CHARACTERISTICS	5–28
MPU INTERFACES (REFERENCE)	5–31
LCD CELL INTERFACE	5–32
LCD DRIVE WAVEFORMS (B WAVEFORMS)	5–34
EXAMPLE OF INSTRUCTION SETUP (REFERENCE)	5–35
OPTION LIST	5–38
CAUTIONS	5–39

OUTLINE

The SED1225 dot-matrix LCD Controller Driver receives 4-bit, 8-bit, or serial data from the microprocessor and displays up to 36 characters, four user-defined characters, and up to 120 symbols.


Up to 256 types of built-in character generator ROMs are provided. Each character font has a 5×8 -dot structure. Also, the user-defined character RAM contains four 5×8 -dot characters. In addition, a symbolic register can be used for flexible symbol display. The Driver featuring the very low power consumption can drive a handy terminal unit in either Sleep or Standby mode with the minimum power consumption.

FEATURES


- Built-in display data RAM Can display up to 36 characters, 4 user-defined characters, and 120 symbols.
- Built-in CGROM (for 256-character display), CGRAM (for 4-character display), and symbol register (for 120 symbol display)
- No. of display columns by lines Normal mode: (12 columns plus 4 signal segments) × 3 line + 120 symbols + 10 static symbols Standby mode: 10 static symbols
- Built-in C&R oscillators

- Available external clock input
- High-speed MPU interfaces Interface to both 68- and 80-series MPUs Support of 4/8-bit interface
- Support of serial interface
- Character font: 5x8 dots
- Duty ratio: 1/18, 1/26
- Simple command setup
- Built-in LCD drive power circuit: Power amp and regulator
- Built-in electronic controls
- Very low power consumption 30 μA (including the operating current of the built-in power supply during normal operation) 10 μA (Static icon display during Standby operation 5 μA (Display off during Sleep operation)
- Power supplies VDD – Vss: -1.7 to -3.6 V VDD – V5: -3.0 to -6.0 V
- Wide operating temperature range: Ta=-30 to +85°C
- CMOS process
- Package design Chip (with gold bump): SED1225D*B TCP: SED1225T**
- This IC package is not designed to have a radiation or strong light resistance.

BLOCK DIAGRAM

PIN ASSIGNMENT

SED1225D<u>*</u>*

CGROM pattern version number

Chip size:	$7.85 \times 1.97 \text{ mm}$
Pad pitch:	90 µm (min)
Chip thickness (Reference):	625 µm

Au bump specifications

 Bump size:
 Pad Nos. 59 to 72, and 155 to 171:
 78 μm × 59 μm

 Pad Nos. 1 to 58, and 73 to 154:
 59 μm × 78 μm

 Bump height (Reference):
 22.5 μm

Pad coordinates (1/2)

PAD		Coordinate]	PAD		Coordinate	
No.	Name	Х	Y		No.	Name	Х	Y
1	Dummy	-3768	-822		44	Vss	1718	-822
2	Dummy	-3678	-822		45	Vss	1808	-822
3	A0	-3349	-822		46	C86	1973	-822
4	XWR(E)	-3200	-822		47	PS	2122	-822
5	XCS	-3050	-822		48	IF	2272	-822
6	D7(SI)	-2901	-822		49	RES	2421	-822
7	D6(SCL)	-2751	-822		50	ХСК	2571	-822
8	D5	-2602	-822		51	VS1	2720	-822
9	D4	-2452	-822		52	(FSA)	2893	-822
10	D3	-2303	-822		53	(FSB)	3065	-822
11	D2	-2153	-822		54	(FSC)	3237	-822
12	D1	-2004	-822		55	(FS3)	3409	-822
13	D0	-1854	-822		56	(Vdd)	3589	-822
14	XLE1	-1705	-822		57	(Vdd)	3678	-822
15	XLE1	-1615	-822		58	(Vdd)	3768	-822
16	XLE2	-1466	-822		59	(FS2)	3758	-628
17	XLE2	-1376	-822		60	(FS1)	3758	-456
18	Vdd	-1286	-822		61	(FS0)	3758	-283
19	Vdd	-1197	-822		62	COMSA	3758	-179
20	Vss	-1107	-822		63	COMS1	3758	-90
21	Vss	-1017	-822		64	COM1	3758	0
22	V5	-868	-822		65	COM2	3758	90
23	V5	-778	-822		66	COM3	3758	179
24	V4	-629	-822		67	COM4	3758	269
25	V4	-539	-822		68	COM5	3758	359
26	V3	-389	-822		69	COM6	3758	449
27	V3	-300	-822		70	COM7	3758	538
28	V1	-150	-822		71	COM8	3758	628
29	V1	-60	-822		72	COMS1	3758	718
30	(Vreg1)	89	-822		73	Dummy	3768	822
31	(Vreg1)	179	-822		74	Dummy	3678	822
32	Vreg2	328	-822		75	SEGS1	3409	822
33	Vreg2	418	-822		76	SEGS2	3320	822
34	OCA	567	-822		77	SEG1	3230	822
35	OCA	657	-822		78	SEG2	3140	822
36	OCB	807	-822		79	SEG3	3050	822
37	OCB	896	-822		80	SEG4	2961	822
38	OCC	1046	-822		81	SEG5	2871	822
39	OCC	1136	-822		82	SEG6	2781	822
40	OCD	1285	-822		83	SEG7	2692	822
41	OCD	1375	-822		84	SEG8	2602	822
42	OCE	1524	-822		85	SEG9	2512	822
43	OCE	1614	-822		86	SEG10	2423	822

Pad coordinates (2/2)

F	PAD	Coord	linate]		PAD	Coordinate		
No.	Name	Х	Y		No.	Name	Х	Y	
87	SEG11	2333	822		130	SEG54	-1524	822	
88	SEG12	2243	822		131	SEG55	-1614	822	
89	SEG13	2153	822		132	SEG56	-1704	822	
90	SEG14	2064	822		133	SEG57	-1793	822	
91	SEG15	1974	822		134	SEG58	-1883	822	
92	SEG16	1884	822		135	SEG59	-1973	822	
93	SEG17	1795	822		136	SEG60	-2062	822	
94	SEG18	1705	822		137	SEGS4	-2152	822	
95	SEG19	1615	822		138	SEGS5	-2242	822	
96	SEG20	1526	822		139	Dummy	-2332	822	
97	SEG21	1436	822		140	Dummy	-2422	822	
98	SEG22	1346	822		141	Dummy	-2512	822	
99	SEG23	1256	822		142	COM24	-2602	822	
100	SEG24	1167	822		143	COM23	-2692	822	
101	SEG25	1077	822		144	COM22	-2781	822	
102	SEG26	987	822		145	COM21	-2871	822	
103	SEG27	898	822		146	COM20	-2961	822	
104	SEG28	808	822		147	COM19	-3050	822	
105	SEG29	718	822		148	COM18	-3140	822	
106	SEG30	629	822		149	COM17	-3230	822	
107	SEG31	539	822		150	COM16	-3320	822	
108	SEG32	449	822		151	COM15	-3409	822	
109	SEG33	359	822		152	Dummy	-3589	822	
110	SEG34	270	822		153	Dummy	-3678	822	
111	SEG35	180	822		154	Dummy	-3768	822	
112	SEG36	90	822		155	COM14	-3758	718	
113	SEG37	1	822		156	COM13	-3758	628	
114	SEG38	-89	822		157	COM12	-3758	538	
115	SEG39	-179	822		158	COM11	-3758	449	
116	SEG40	-268	822		159	COM10	-3758	359	
117	SEG41	-358	822		160	COM9	-3758	269	
118	SEG42	-448	822		161	COMS2	-3758	179	
119	SEG43	-538	822		162	SEGSA	-3758	90	
120	SEG44	-627	822		163	SEGSB	-3758	0	
121	SEG45	-717	822		164	SEGSC	-3758	-90	
122	SEG46	-807	822		165	SEGSD	-3758	-179	
123	SEG47	-896	822		166	SEGSE	-3758	-269	
124	SEG48	-986	822		167	SEGSF	-3758	-359	
125	SEG49	-1076	822		168	SEGSG	-3758	-449	
126	SEG50	-1165	822		169	SEGSH	-3758	-538	
127	SEG51	-1255	822		170	SEGSI	-3758	-628	
128	SEG52	-1345	822		171	SEGSJ	-3758	-718	
129	SEG53	-1435	822						

PIN DESCRIPTION

Power Supply Pins

Pin Name	I/O	Description	No. of Pins			
Vdd	Power supply	Connects to the logic power supply. This is common to the Vcc power pin of the MPU.	1			
Vss	Power supply	Power supply 0V power pin connected to system ground (GND)				
V1, V3 V4, V5	Power supply	Multi-level LCD drive power supplies. A capacitor is required for external stabilization.	4			
Vs1	0	Output pin of oscillator (OSC) power voltage. A capacitor is required for stabilization.	1			

Notes: Two Vss pins are provided. As they are commonly connected inside the IC, an input into any Vss can be used if power impedance is low. To have the enough noise resistance, however, the Vss power input from each pin is recommended.

LCD Power Pins

Pin Name	I/O	Description	No. of Pins
Vreg2	0	Output pins of LCD voltage and amp source power supplies. A capacitor is required for stabilization.	1
OCA OCB OCC OCD OCE	0	A voltage capacitor pin. A capacitor is required for amplification.	5

LED Drive Terminal

Pin Name	I/O	Description	No. of Pins
XLE1 XLE2		An Nch open drain output terminal to drive the LED. Connects to the LED cathode.	2

System Bus Connector Pins

Pin Name	I/O	Descrition										No. of Pins		
		An 8-bit input data bus to be connected to the standard 8- or 16-bit MPU data bus. Pins D7 and D6 function as the serial data and clock inputs respectively if PS is logical low.												
		PS	C86	IF	D7	D6	D5	D5 D4 D3 to D0 XCS A0 XWR						
D7(SI) D6(SCL) D5 to D0	I	"L" "H" "H" "H" "H"	— "H" "L" "L"	— "H" "L" "H" "L"	SI D7 D7 D7 D7	SCL D6 D6 D6 D6	OPEN D5 D5 D5 D5	OPEN D4 D4 D4 D4 D4	OPEN D3-D0 OPEN D3-D0 OPEN	XCS XCS XCS	A0 A0 A0 A0 A0	E E XWR XWR	8	
			etter no	oise-res	istance	charac	teristics	5.	mmend		x to hav	/e		
AO	I	or comm 0: Indic	Usually, the most significant bit of MPU address bus is connected to identify data or command. 0: Indicates D0 to D7 are command. 1: Indicates D0 to D7 are display data.							1				
RES	I	Initializes	s when	RES is	set to I	ow. Th	ie syste	m is re	set at R	ES sigr	nal leve	Ι.	1	
XCS	Ι	A Chip S This is va			he add	lress bu	ıs signa	l is dec	oded ar	nd ente	red.		1	
XWR	I	Active The W at the - When Active Used a	 When an 80-series MPU is connected Active low. The WR signal of 80-series MPU is connected. The data bus signal is fetched at the rising edge of XWR signal. When a 68-series MPU is connected Active high. Used as an Enable Clock input of 68-series MPU. The data bus signal is fetched at the falling edge of XWR signal. 								1			
		A switch	ing pin	betwee	n seria	data ir	put and	l paralle	el data i	nput.				
		P/S	(Chip se	lect	Data/C	ommar	nd D	ata	Se	rial Clo	ock		
PS	I	"H"		XCS	5		A0	D0	to D7				1	
		"L"		XCS	5		A0		SI		SCL			
IF	I	- 8-bit - 4-bit	An interface data length select pin during parallel data input. - 8-bit parallel input if IF=high - 4-bit parallel input if IF=low This pin is connected to Vpp or Vss if PS=low.							1				
C86	I	- 68-se - 80-se	An MPU interface switch pin. - 68-series MPU interface if C86=high - 80-series MPU interface if C86=low This pin is connected to VDD or Vss if PS=low.							1				
хск	I	An exter It must b To use a comman	e fixed n exter	to high	to use				llator OF	F by is	suing t	he	1	

LCD Driver Signals

Dynamic drive pins

Pin Name	I/O	I/O Description					
COM1 to COM24	0	Common signal output pins (for character display)	24				
COMS1, COMS2	0	Common signal output pins (for non-character display) COMS1, COMS2: Common outputs for symbol display	3				
SEG1 to SEG60	0	Segment signal output pins (for character display)	60				
SEGS1, 2 4, 5	0	Segment signal output pins (for non-character display) SEGS1, 2, 4, 5: Segment outputs for signal output	4				

Note: As the same COMS1 signal is output at two pins, one of them must be used.

Static drive pins

Pin Name	I/O	Description	No. of Pins
COMSA	0	Common signal output pin (for icon display)	1
SEGSA, B C, D, E, F G, H, I, J	0	Segment signal output pin (for icon display)	10

Notes: We recommend to separate LCD panel electrodes of static drive pins from those of dynamic drive pins. If these patterns are closely located, the LCD and its electrodes may be deteriorated.

FUNCTION DESCRIPTION

MPU Interfaces

Interface type selection

Table 1

PS	Туре	XCS	A0	XWR	SI	SCL	D0 to D7
н	Parallel input	XCS	A0	XWR	-	-	D0 to D7
L	Serial input	XCS	A0	H, L	SI	SCL	_

The SED1225 has the C86 pin for MPU selection. If the parallel input is selected (PS=high), if can be connected directly to the 80-series or 68-series MPU by setting the

C86 pin to high or low (see Table 2). Also, the 8-bit or 4-bit data bus can be selected by the IF pin signal.

The SED1225 can transfer data via the 4- or 8-bit data bus or via the serial data input (SI). The parallel or serial data

input can be selected by setting the PS pin to high or low

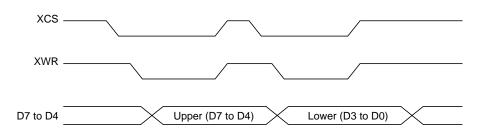

(see Table 1).

Table 2

C86 pin signal	Туре	A0	XWR	XCS	D0 to D7		
"L"	80 series	A0	XWR	XCS	D0 to D7		
"H"	68 series	A0	E	XCS	D0 to D7		

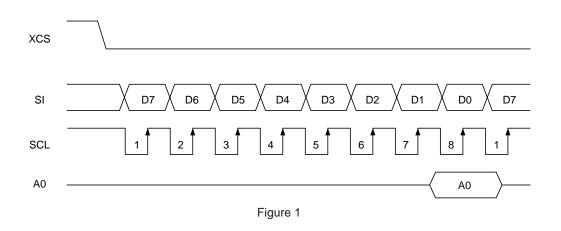
Interface to 4-bit MPU

If the 4-bit interface is selected (IF=low), the 8-bit command and data, and its address are transferred in two times.

Note: During continuous writing, the write time greater than the system cycle time (tcyc) must be set before the subsequent write operation.

Serial interface

The serial interface consists of an 8-bit shift register and a 3-bit counter. During chip select (XCS=low), an SI input and an SCL input can be accepted. During no chip select (XCS=high), the shift register and counter is initialized (reset).


Serial data of D7 to D0 are fetched in this order from the serial data input pin (SI) at the rising edge of serial clock. The data is converted into 8-bit parallel data at the rising edge of the eighth serial clock.

The serial data input (SI) is identified to have the display data or command by the A0 input. It is display data if A0=high, and it is command if A0=low.

The A0 input is fetched and identified at the rising edge of " $8 \times$ n-th" serial clock (SCL). Figure 1 shows a serial interface timing chart.

The SCL signals must be well protected from the far-end reflection and ambient noise due to increased line length. The operation checkout on the actual machine is recommended.

Also, we recommend to repeat periodical command writing and status refreshing to avoid a malfunction due to noise.

Data bus signal identification

The SED1225 identifies the data bus based on a combination of A0, AWR and E signals as defined on Table 3.

Table 3

Common	68 Series	80 Series	Function					
A0	Е	XWR	Function					
1	1	0	Writes in the RAM and symbol register.					
0	1	0	Writes (commands) in the internal register.					

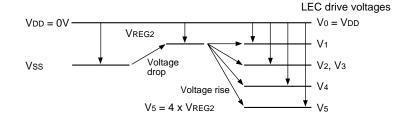
Chip Select

The SED1225 has an Chip Select pin (XCS) to allow an MPU interface input only if XCS=low.

During no chip select status, all of D0 to D7, A0, XWR, SI and SCL inputs are made invalid. If the serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is entered independent from the XCS status.

Power Circuit


The built-in power circuit featuring the low power

consumption generates the required LCD drive voltages. The power circuit consists of an amp and a voltage regulator.

Amp

When the capacitors are connected to the OCA, OCB, OCC, OCD, OCE, VREG2 pins, the LCD drive voltages are generated.

As the amp uses the signals from the oscillator, the oscillator or an external clock must be operating. The following provides the potential relationship.

Voltage regulator

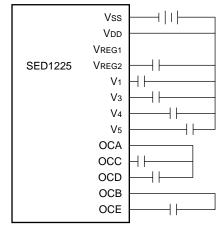
 Voltage regulator using the electronic control function Use the electronic control function and set the voltages appropriate to the LCD panel driving.

When a 5-bit data is set in the electronic control register, one of 32-state voltages can be set for LCD driving. Before using the electronic control function, turn ON the power circuit by issuing the power control command.

The following explains how to calculate the voltages using the electronic control function.

 $V_5 = 4 \times V_{\rm EV}$

Conditions: Vev = VREG2 - Xwhere, $X = n\alpha$ (n=0, 1, ..., 31) $\alpha = VREG2/95$


No.	Electronic control register	Х	V5
0	(0, 0, 0, 0, 0)	0	Large
1	(0, 0, 0, 0, 1)	1α	•
2	(0, 0, 0, 1, 0)	2α	•
3	(0, 0, 0, 1, 1)	3α	•
•	•	•	•
•	•	•	•
30	(1, 1, 1, 1, 0)	n-1α	•
31	(1, 1, 1, 1, 1)	nα	Small

This is reference voltage for the liquid crystal drive power circuit. The VREGZ has a temperature characteristics of about -0.05%/deg.

External unit connection examples

An external voltage regulation capacitor must be connected to the LCD power pin. The LCD drive voltages are fixed to 1/4 biasing.

1/4 bias example

Note: We recommend to display the capacitance appropriate to the LCD panel size and set up the capacitance by observing the drive signal waveforms.

Reference set value: (0.1~1.0 µF)

Power Save mode

The SED1225 supports the Standby and Sleep modes to save the power consumption during system idling.

Standby mode

The Standby mode is selected or released by the Power Save command. During Standby mode, only the static icon is displayed.

1. LCD display outputs

COM1 to COM16, COMS1, COMS2: VDD level

SEG1 to SEG60, SEGS1, 2, 4, 5: VDD level

SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Can light by static drive Use the Static Icon RAM to display the static icon with SEGSA, B, C, D, E, F, G, H, I, J and COMSA.

- DDRAM, CGRAM and symbol register Their write contents do not change. The contents are kept regardless of Standby mode selection or release.
- 3. The operation mode before selection of Standby mode is kept.

The internal circuits for dynamic display are stopped.

4. Oscillator

The oscillator must be turned ON for static display.

Sleep mode

To select the Sleep mode, turn OFF the power circuit and oscillator by issuing the command, and clear all data of Static Icon register to zero. Then, issue the Power Save command. The system power consumption will be minimized to almost the stopped status.

1. LCD display outputs

COM1 to COM16, COMS1, COMS2: VDD level

SEG1 to SEG60, SEGS1, 2, 4, 5: VDD level

SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Clear all data of Static Icon register to zero.

- 2. DDRAM, CGRAM and symbol register Their write contents do not change. The contents are kept regardless of Standby mode selection or release.
- 3. The operation mode before selection of Standby mode is kept.

All internal circuits are stopped.

4. Oscillator

Turn OFF the built-in power supply and oscillator by issuing the Power Save and power control commands. SED1225 Series

Reset Circuit

When the RES input is made active, this LSI is initialized.

vhen the RES inpu	it is made active, this LSI is initi
Initialization sta	atus
(1) Display ON	/OFF control
C=0:	Cursor off
B=0:	Blink off
DC=0:	Normal display
D=0:	Display off
(2) Power save	
O=0:	Oscillating circuit off
PS=0:	Power save off
(3) Power control	ol
P=0:	Power circuit off
(4) System set	
N=0:	3 lines
S2, S1=0:	Direction of normal display
CG=0:	CGRAM unused
(5)Electronic co	ontrol
Address:	28H
Data:	(0,0,0,0,0)
(6) Static icon	
Address:	20H to 23H
Data:	(0,0,0,0,0)

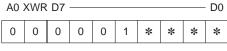
(7)LED registe	r
Address:	2AH
Data:	(0,0,0,0,0)
(8)CG RAM, I	DD RAM and symbol register
Address:	00H to 1FH, 30H to 7CH
Data:	Must be initialized by MPU after
	reset input because of being
	indefinite.

Connect the RES terminal to the MPU reset terminal as described in "6-1 MPU Interface", and execute initialization simultaneously with the MPU. However, if the MPU bus and port are put into high impedance for a certain time period by resetting, perform reset input to the SED1225 after the input to the SED1225 has been determined. When the RES terminal becomes "L", each register is cleared and the above setup is established. If initialization by the RES terminal is not performed when power voltage is applied, resetting may be disabled.

COMMAND

Table 4 lists the supported commands. The SED1225 identifies a data bus by a combination of A0, XWR and E signals. It features high-speed processing as the

Command outline


Table 4			
Command type	Command name	A0	XWR
Display control	Cursor Home	0	0
instruction	Display On/Off Control	0	0
Power control	Power Save	0	0
I Ower control	Power Control	0	0
System setup	System Setup	0	0
Address control instruction	Address Setup	0	0
Data input instruction	Data Write	1	0

timing only.

As the execution time of each instruction depends on the internal processing time of the SED1225, an enough time greater than the system cycle time (tcyc) must be assigned for continuous instruction execution.

- · Explanation of commands
 - (1) Cursor Home

The Cursor Home command presets the Address counter to 30H, and shifts the cursor to column 1 of line 1 if Cursor Display is ON.

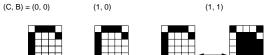
(2) Display On/Off Control

The Display On/Off Control command sets the LCD character and cursor display.

A0 XWR D7 D0										
0	0	0	0	1	1	С	В	DC	D	

* : Don't Care

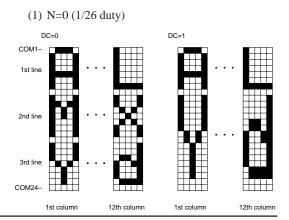
- D=0: Turns the display off.
- D=1: Turns the display on.
- DC=0: Selects the standard size display.
- DC=1: Selects the double-height vertical display.
- B=0: Turns cursor blinking off.
- B=1: Turns cursor blinking on.


During blinking, the cursor character is alternately displayed normally and reversely. The normal and reverse display is repeated approximately every one second.

- C=0: Does not display the cursor.
- C=1: Displays the cursor.

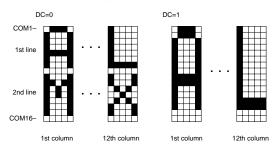
The following provides the relationship between the C and B registers and cursor display.

commands are analyzed and executed in the internal


С	В	Cursor display				
0	0	Not displayed				
0	1	Not displayed				
1	0	Underbar cursor				
1	1	Alternate character display normally and reversely				

for NIL

The cursor display position is indicated by the address counter. Accordingly, to move the cursor, change the address counter value by automatic increment by writing the RAM address set command or RAM data.


The following shows the relationship between the DC resistor and display:

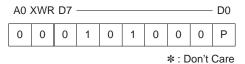
EPSON

The character on the 3rd line will be displayed in double size on the second and third lines by setting DC=1.

(2) N=1 (1/18 duty)

The character on the 1st line will be displayed in double size on the first and second lines by setting DC=1.

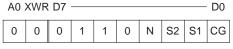
(3) Power Save


The Power Save command controls the oscillator and sets or releases the Sleep mode.

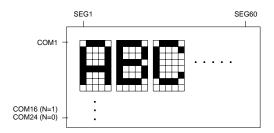
A0 XWR D7 — D										
0	0	0	1	0	0	*	*	0	PS	

* : Don't Care

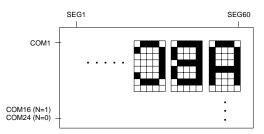
- PS=0: Turns the Power Save on. (Release)
- PS=1: Turns the Power Save off. (Select)
- O=0: Turn the oscillator off. (Stop oscillation)
- O=1: Turns the oscillator on. (Oscillation)
- (4) Power Control


The Power Control command controls the builtin power circuit operations.

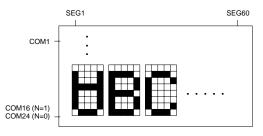
- P=0: Turns the power circuit off.
- P=1: Turns the power circuit on.
- Note: The oscillator must be operating to operate the voltage amp.

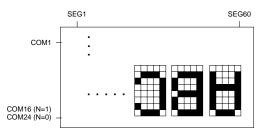

(5) System Reset

The System Reset command sets the display direction, the display line, and the use or no use of CGRAM. This command must first be executed after the power-on or reset.

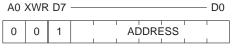


*	:	Don't	Care
---	---	-------	------


N=0:	Displays 3 lines. (1/26 duty)
N=1:	Displays 2 lines. (1/18 duty)
S2=0:	Normal display
S2=1:	Right and left reverse display
S1=0:	Normal display
S1=1:	Top and bottom reverse display
CG=0:	Does not use the CGRAM.
CG=1:	Uses the CGRAM.
(1) Nor	mal display


(2) Horizontal flipping

(3) Vertical flipping


(4) Horizontal vertical flipping

(6) RAM Address Setup

The RAM Address Setup command sets an address into the Address counter to write data into DDRAM, CGRAM and Symbol register.

When the cursor display is ON, the cursor is located at a position corresponding to the DDRAM address set by this command.

* : Don't Care

(1) The 00H to 7FH address length can be set. To write data in the RAM, set the data write address by this command. When the subsequent data is written continuously, the address is automatically incremented.

RAM map

(7) Data Write

A0 XWR D7

0 1

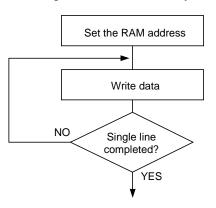
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
00H			CC	GRAN	/ (00H	I)					С	GRA	M (01	H)		
10H			CC	GRAN	/I (02H	I)					С	GRA	M (03	H)		
20H	SI1		SI	2		Unu	ised		EV	TEST	LED	LED Unused				
30H	DDRAM line 1									For signals				Unuse	ed	
40H					D	DRAM	1 line 2	2				-	-		Unuse	ed
50H					D	DRAN	1 line 3	3							Unuse	ed
60H	Symbol register Unused										əd					
70H						Sym	nbol re	gister							Unuse	ed
I	SI : Static Icon register EV : Electronic Control register TEST : Test register							LED For sig Symb	0	:	LED SEGS COM	S1, 2,	4, 5	2		

DATA

(1) This command writes data in the DDRAM,

(2) When this command is executed, the Address counter is incremented by 1 automatically. This allows continuous data writing.

CGRAM or Symbol register.


(Do not use in normal operations.)

D0

* : Don't Care

Data write example:

The following gives an example to write a single line of data continuously.

Note: Assign an enough time greater than "tcyc" before executing the next instruction.

					Code	de					E undition
CONTINUARIO	AO	A0 XWR	D7	D6	D5	D4	D3	D2	Б	8	LAUGUOI
(1) Cursor Home	0	0	0	0	0	-	*	*	*	*	Shifts the cursor to its home position.
(2) Display On/Off Control	0	0	0	0	-	-	U	۵	DC	۵	Turns on or off the cursor, cursor blinking, double-size display, and data display. C=1: Cursor ON; C=0: Cursor OFF B=1: Blinking ON; B=0: Blinking OFF DC=1: Double-size display; DC=0: Normal display D=1: Display ON; D=0: Display OFF
(3) Power Save	0	0	0	~	0	0	*	*	0	PS	Turns on or off the Power Save mode and oscillator. PS=1: Power Save ON; PS=0: Power Save OFF O=1: OSC ON; O=0: OSC OFF
(4) Power Control	0	0	0	~	0	-	0	0	0	٩	Turns on or off the built-in power circuit and voltage follower capacity, and sets the amp frequency. P=1: Power circuit ON; P=0: Power circuit OFF
(5) System Reset	0	0	0	~	.	0	z	S2	S.	CG	Sets the use or no use of CGRAM and the display direction. N=1: 3-line display; N=0: 2-line display CG=1: Use of CGRAM; CG=0: No use of CGRAM S2=0, S1=0: Normal display S2=0, S1=1: Top and bottom reverse display S2=1, S1=0: Right and left reverse display S2=1, S1=1: 180-degree rotation display
(6) RAM Address Setup	0	0	1			AD	ADDRESS	SS			Sets an address of DDRAM, CGRAM or Symbol register.
(7) RAM Write	-	0				DATA	τA				Writes data in the DDRAM, CGRAM or Symbol register.
(8) NOP	0	0	0	0	0	0	0	0	0	0	This is a non-operation command.
(9) Test Mode	0	0	0	0	0	0	*	*	*	*	This is an IC chip test command. Do not use in normal operations.

Table 4 SED1225 command list

SED1225 Series

BUILT-IN MEMORIES

Character Generator ROM (CGROM)

The SED1225 contains up to 126 types of CGROMs. Each character has a 5×8 -dot structure.

Tables 5 to 8 defines the SED1225D** character codes. Four characters (00H to 03H) of character codes are used for the CGROM or CGRAM by the System Setup command. The SED1225's CGROM is a mask ROM and it can be used as a custom CGROM. Consult to our sales agency for details.

The CGROM versions are identified as follows: Example: SED1225D0B ↑

CGROM pattern ID

		0	1	2	3	4	5	6	ower 4 E 7	Sit of Coc 8	e 9	A	В	С	D	E	F
	0																
	1																
	2																
	3																
	4																
	5																
	6																
it of Cord	7																
Higher 4 Bit of Cord	8																
	9																
	A																
	в																
	с																
	D																
	E																
	F																

Table 5 SED1225DAB

Table 6 SED1225DBB

									Bit of Coo						
		0	1	3	4	0	6	7	8	9	A	С	D	E	F
	0														
	1														
	2														
	3	_													
	4														
	5														
	6														
Cord	7														
Higher 4 Bit of Cord	8														
Î															
	9														
	A														
	В														
	с														
	D														
	E														
	F														

	[Bit of Cod							
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0																
	1																
	2																
	3																
	4																
	5																
	6																
of Cord	7																
Higher 4 Bit of Cord	8																
	9																
	А																
	в																
	с														┍╼┙┼┼╴		
	D																
	E																
	F															*	

Table 7 SED1225DGB

Character Generator RAM (CGRAM)

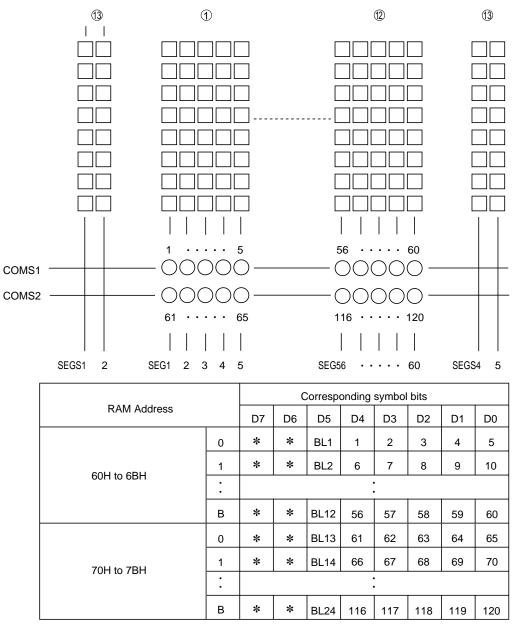
The SED1225 has a built-in CGRAM to program userdefined character patterns for highly flexible signal and character display.

Issue the System Setup command to use the CGRAM. The CGRAM has the 160-bit storage capacity, and it can store up to four 5×8-dot character patterns.

The following provides the relationship between CGRAM character patterns and CGRAM addresses and character codes.

Character	RAM				С	GRA	M Da	ta			Character Display	Signal D	isplay
Code	Address		D7							D0	SEG	SEGS	4 5
00H	00H to 07H	0	*	*	*	0	1	1	1	1			45
		1	*	*	*	1	0	0	0	0			
		2	*	*	*	1	0	0	0	0			$\Box\Box$
		3	*	*	*	0	1	1	1	1			
		4	*	*	*	0	0	0	0	1			
		5	*	*	*	0	0	0	0	1			
		6	*	*	*	1	1	1	1	0			
		7	*	*	*	0	0	0	0	0			
01H	08H to 0FH	8	*	*	*	0	0	1	0	0			
		9	*	*	*	0	0	1	0	0			$\Box\Box$
		А	*	*	*	0	1	1	1	0			
		В	*	*	*	0	1	1	1	0			
		С	*	*	*	0	1	1	1	0			
		D	*	*	*	1	1	1	1	1			
		Е	*	*	*	1	1	1	1	1			
		F	*	*	*	0	0	0	0	0			

D7 to D5: Un used


D4 to D0: Character data (1 for display; 0 for no display)

The 5×8-dot character size can also be set. To do so, use the *7H and *FH RAM addresses. However, the *7H and *FH data is reversed if the underbar cursor is used.

Symbol Register

The SED1225 has a built-in Symbol register to allow separate symbol setup on the display panel.

The Symbol register has the 120-bit storage capacity, and it can display 120 symbols. Also, the SED1225 contains a Blink register for every 5-dot blinking. The following provides the relationship between the Symbol register display patterns, RAM addresses and write data.

BL1 to BL24: Blinking setup (0 for no blinking; 1 for blinking)

Note: If the symbol size is 1.5 times greater than other dots, we recommend to divide and drive the SEG* and COMS1 and COMS2 separately.

Static Icon RAM

The SED1225 has a built-in Static Icon RAM to display a static icon separately from the dynamic icon. The Static Icon RAM has the 20-bit storage capacity, and

(SEGSA, B, C, D, E)

it can display 10 icons. The following provides the relationship between the static icon functions and the static icon, RAM address and write data.

F unction	DAMAddagag			Sta	atic Ic	on D	ata			Display
Function	RAM Address	D7							- D0	SEGSA B C D E
Display ON/OFF	20H	*	*	*	0	0	1	1	1	
Blink ON/OFF	21H	*	*	*	1	0	0	0	1	

(SEGSF, G, H, I, J)

Function				Sta	atic Ic	on D	ata			Display
Function	RAM Address	D7							- D0	SEGSA B C D E
Display ON/OFF	22H	*	*	*	0	0	1	1	1	
Blink ON/OFF	23H	*	*	*	1	0	0	0	1	

* : Unused

1 : Display or blinking

0 : No display or no blinking

f BLINK : 1 to 2Hz

Electronic Control RAM (Register)

The SED1225 has the electronic control functions to control LCD drive voltages and to adjust the LCD display density. One of 32-state LCD voltages can be selected when the 5-bit data is written in the Electronic

Control RAM.

The following provides the relationship between the RAM address and write data by electronic control setup.

Function			E	lectro	onic C	Contro	ol Dat	a		Chatura	
Function	RAM Address	D7							D0	Status	Vev
Electronic	28H	*	*	*	0	0	0	0	0	0	Vreg-0
Control		*	*	*	0	0	0	0	1	1	$VREG-\alpha$
		*	*	*	0	0	0	1	0	2	Vreg-2α
						•				•	
						:				:	
						•				:	:
		*	*	*	1	1	1	0	1	29	Vreg-29α
		*	*	*	1	1	1	1	0	30	Vreg-30 α
		*	*	*	1	1	1	1	1	31	Vreg-31α
	29H	*	*	*	*	*					For test

* : Unused

 α : α =VREG/95 (1/4biased)

Note: Do not use address 29H as it can be used for IC chip test only.

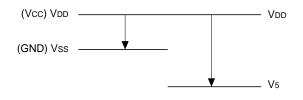
LED RAM (Register)

The SED1225 has the LED drive functions to drive the LCD by controlling the XLE1 and XLE2 pins.

The following provides the relationship between the RAM address and write data by LED register setup.

Europhian.				LEI	D Regis	ster Dat	a		
Function	RAM Address	D7				D3	D2	D1	D0
LED ON/OFF Timer	2AH	*	*	*	*	TIM2	TIM1	LED2	LED1

*: Unused


The following defines the XLE1 and XLE2 pin state depending on the TIM1, TIM2, LED1 and LED2 set values.

LED Registe	er Set Value	
TIM2 TIM1	LED2 LED1	Output Status (XLE1, XLE2)
0	0	XLE = High impedance
0	1	XLE = Low
1	0	Keeps XLE low approximately 15 sec after input of Display ON command.
1	1	XLE = Low

Note: When this function is used, minimize power supply and power cable impedance to avoid IC misoperation due to large current.

MAXIMUM ABSOLUTE RATINGS

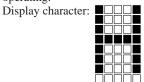
lte	em	Symbol	Rating	Unit
Power voltag	je (1)	Vss	-0.6 to +0.3	V
Power voltag	je (2)	V5	-7.0 to +0.3	V
Power voltag	je (3)	V1, V2, V3, V4	V5 to +0.3	V
Input voltage	•	Vin	Vss-0.3 to +0.3	V
Output voltag	ge	Vo	Vss-0.3 to +0.3	V
Operating ter	mperature	Topr	-30 to +85	°C
Storage	ТСР	Tatr	-55 to +100	
temperature	Bare chip	Tstr	-65 to +125	°C

- Notes: 1. All voltages are referenced to VDD=0 V.
 - 2. The following voltage levels must always be satisfied: $VDD \ge V1 \ge V2 \ge V3 \ge V4$, and $VDD \ge VSS \ge V5$
 - 3. If the LSI is used beyond the maximum absolute rating, the LSI may be destroyed permanently. The LSI should meet the electric characteristics during normal operations. If not, the LSI may be malfunction or the LSI reliability may be lost.

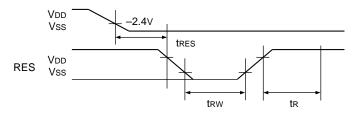
DC CHARACTERISTICS

			· ·		7 V, Ta = -3				,
lte	m	Symbol	C	onditions	Min.	Тур.	Max.	Unit	Pin
Power	Operable		1/4 bias		-3.6	-3.0	-1.7		
voltage	opolabio	Vss	1/5 bias		-3.6	-3.0	-2.7	V	Vss
(1)	Data hold voltage	V88			-3.6		-1.5	v	VSS
Power	Operable	V5			-6.0		-3.0	V	V5
voltage	Operable	V1, V2			$0.5 \times V_5$		Vdd	V	V1, V2
(2)	Operable	V3, V4			V5		$0.5 \times V_5$	V	V3, V4
"Hi" input v	/oltage	Viнc			0.2×Vss		Vdd	V	*2
"Lo" input	voltage	VILC			Vss		$0.8 imes V_{DD}$	V	*2
Input leaka	age current	ILI	Vin = Vdd o	r Vss	-1.0		1.0	μΑ	*2
LCD drive ON resista		Ron (LCD)	Ta=25°C ∆V=0.1V	V5=-5.0V		10	20	kΩ	COM, SEG *3
LED driver ON resista		Ron (LED)	Vss=-3.0V loL=10mA			100		Ω	XLE1, XLE2
Static curr consumpti		IDDQ				0.1	5.0	μΑ	Vdd
	During		V5 = -5	/; No loading Vss=–1.8V		20	30	μΑ	Vdd *4
Dynamic		During display	V5 = -5	/; No loading Vss=–3.0V		30	45	μΑ	Vdd *4
current consump-	loo	During standby		i; PWR off ng;Vss=–3.0V		10	15	μΑ	Vdd
tion		During sleep		f; PWR off ng;Vss=–3.0V		0.1	5	μΑ	Vdd
		During access	fcyc=20	0KHz Vss=–3.0V		150	300	μΑ	Vdd *5
Input pin c	apacity	CIN	Ta=25°C, f	=1MHz		8.0	10.0	pF	*3

(Vss = -3.6 to -1.7)	/, Ta = −30 to +85°C	unless otherwise noted.)
------------------------	----------------------	--------------------------


Frame frequency	f FR	Ta = 25°C, Vss = -3.0V	70	100	130	Hz	*8
External clock frequency	fск			33.8		kHz	*8, *9

Reset time	t _R	1.0		μs	*6
Reset pulse width	t _{RW}	10		μs	*6
Reset start time	tres	50		ns	*7


Dynamic system:

Built-in power supply	Amp output voltage	V5	Ta = 25°C (during 1/4 bias)	4 × Vreg2			V	
	Reference voltage	Vreg2	Ta = 25°C (during 1/4 bias)	-1.55	-1.5	-1.45	V	

- *1 Although the wide operating character range is guaranteed, a quick and excessive voltage variation may not be guaranteed during access by the MPU. The low-voltage data hold characteristics are valid during Sleep mode. No access by the MPU is allowed during this time.
- *2 D0 to D5, D6 (SCL), D7 (SI), A0, RES, XCS, XWR (E), PS, IF, C86
- *3 The resistance if a 0.1-volt voltage is supplied between the SEGn, SEGSn, COMn or COMSn output pin and each power pin (V1, V2, V3 or V4). It is defined within power voltage (2). Ron = $0.1V/\Delta I$
 - where, ΔI is current that flows when the 0.1-volt voltage is supplied between the power supply and output.
- *4 Applied if not accessed by the MPU during character display and if the built-in power circuit and oscillator are operating.

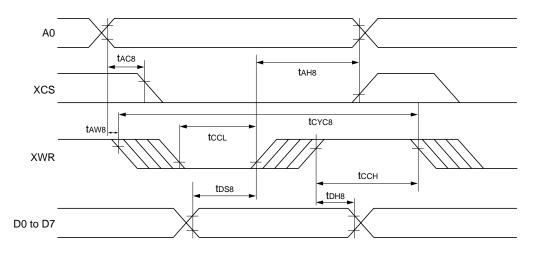
- *5 Current consumption if always written in "fcyc". The current consumption during access is roughly proportional to the access frequency (fcyc).
- *6 The "tR" (reset time) indicates a time period from the rising edge of RES signal to the completion of internal circuit reset. Therefore, the SED1225 enters the normal operation status after "tR".
- *7 Defines the minimum pulse width of RES signal. A pulse width greater than "tRW" must be entered for reset.

All signal timings are based on 20% and 80% of Vss.

*8 The following provides the relationship between the oscillator frequency (fosc) for built-in circuit driving and the frame frequency (fFR).

 $fosc = 13 \times 26 \times fFR$ (3-line display)

 $= 13 \times 18 \times \text{fFR}$ (2-line display)

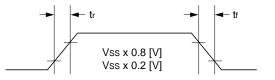

<Reference>

```
fBLK = (1/128) \times fFR
```

*9 Enter the waveforms in 40% to 60% duty to use an external clock instead of the built-in oscillator. If no external clock is entered, fix it to high. (Normal high)

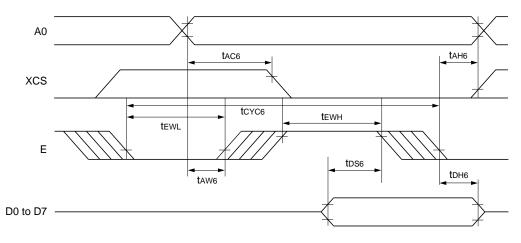
SIGNAL TIMING CHARACTERISTICS

(1) MPU bus write timing (80 series)



			$(Ta = -30 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = -3.6\text{V to } -1.7\text{V})$				
Item	Signal	Symbol	Conditions	Min.	Max.	Unit	
Address setup time Address hold time XCS setup time	A0 XCS	taws tahs tacs		60 30 0		ns	
System cycle time		t _{CYC8}	All timing must be based on	1850	—	ns	
Write "Lo" pulse width (XWR)	XWR	tcc∟	20% and 80% of Vss.	150	—	ns	
Write "Hi" pulse width (XWR)		t ссн		1650	—	ns	
Data setup time Data hold time	D0 to D7	t _{DS8} t _{DH8}		50 50	_	ns	

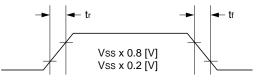
 $(Ta = -30 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = -3.3\text{V to } -2.7\text{V})$


Item	Signal	Symbol	Conditions	Min.	Max.	Unit
Address setup time Address hold time XCS setup time	A0 XCS	taws tahs tacs		60 30 0		ns
System cycle time		t _{CYC8}	All timing must be based on	1150	_	ns
Write "Lo" pulse width (XWR)	XWR	tcc∟	20% and 80% of Vss.	100	—	ns
Write "Hi" pulse width (XWR)		tссн		1000	_	ns
Data setup time Data hold time	D0 to D7	t _{DS8} t _{DH8}		20 20	_	ns

*1 The input signal rise and fall times (tr, tf) are defined to be 25 nsec max (except for RES input).

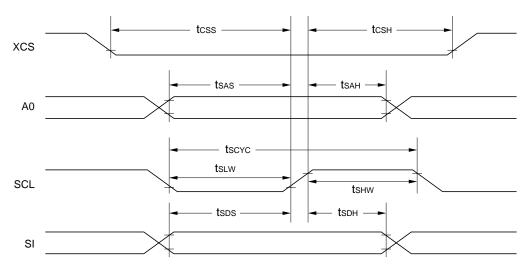
*2 "tCCL" is defined by the overlap time of XCS low level and XWR low level.

(2) MPU bus write timing (68 series)



To 20 to	.0500	V/cc 2.6V/	to 1 7\/)
1a = -3010	+00 C,	Vss = -3.6V	10 - 1.7 V

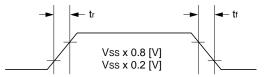
ltem	Signal	Symbol	Conditions	Min.	Max.	Unit
Address setup time Address hold time XCS setup time	A0 XCS	taw6 tah6 tac6		60 50 0		ns
System cycle time		t _{CYC6}	All timing must be based on	1850	-	ns
Enable "Lo" pulse width (XWR)	XWR	tewl	20% and 80% of Vss.	1650	-	ns
Enable "Hi" pulse width (XWR)		tewн		150	-	ns
Data setup time Data hold time	D0 to D7	t _{DS6} t _{DH6}		20 80	-	ns


			(Ta = -30 to +8	5°C, Vss	= -3.3V	to –2.7V)
ltem	Signal	Symbol	Conditions	Min.	Max.	Unit
Address setup time Address hold time XCS setup time	A0 XCS	tawe tahe tace		60 30 0	_ _ _	ns
System cycle time		t _{CYC6}	All timing must be based on	1150	_	ns
Enable "Lo" pulse width (XWR)	XWR	tewl	20% and 80% of Vss.	1000	-	ns
Enable "Hi" pulse width (XWR)		t ewh		100	-	ns
Data setup time Data hold time	D0 to D7	t _{DS6} t _{DH6}		20 50	-	ns

*1 The input signal rise and fall times (tr, tf) are defined to be 25 nsec max (except for RES input).

*2 "tewh" is defined by the overlap time of XCS low level and XWR low level.

(3) Serial interface

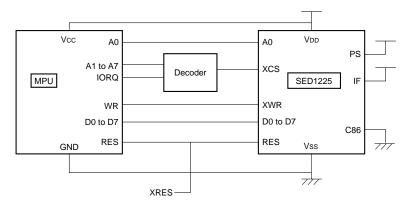

 $(Ta = -30 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = -3.6\text{V to } -1.7\text{V})$

Item	Signal	Symbol	Conditions	Min.	Max.	Unit
System clock cycle SCL "Hi" pulse width SCL "Lo" pulse width	SCL	tscүс tsнw ts∟w		3000 2850 150		ns
Address setup time Address hold time	A0	tsas tsaн	All timing must be based on 20% and 80% of Vss.	50 800		ns
Data setup time Data hold time	SI	tsds tsdн	20% and 80% of vss.	50 50		ns
CS-to-SCL time	XCS	tcss tcsн		400 2500		ns

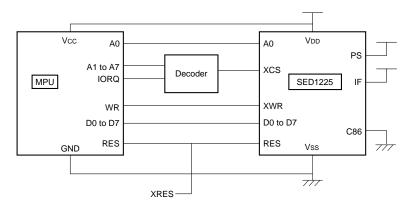
 $(Ta = -30 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = -3.3\text{V to } -2.7\text{V})$

-						
Item	Signal	Symbol	Conditions	Min.	Max.	Unit
System clock cycle SCL "Hi" pulse width SCL "Lo" pulse width	SCL	tscүc tsнw ts∟w		1400 1300 50		ns
Address setup time Address hold time	A0	tsas tsdh	All timing must be based on 20% and 80% of Vss.	50 500		ns
Data setup time Data hold time	SI	tsds tsdн	20% and 60% of VSS.	30 30		ns
CS-to-SCL time	XCS	tcss tcsн		200 1500		ns

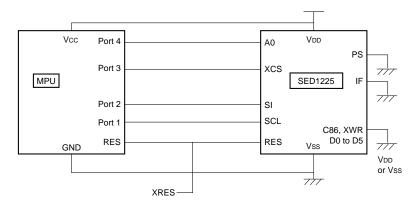
*1 The input signal rise and fall times (tr, tf) are defined to be 25 nsec max (except for RES input).


MPU INTERFACES (REFERENCE)

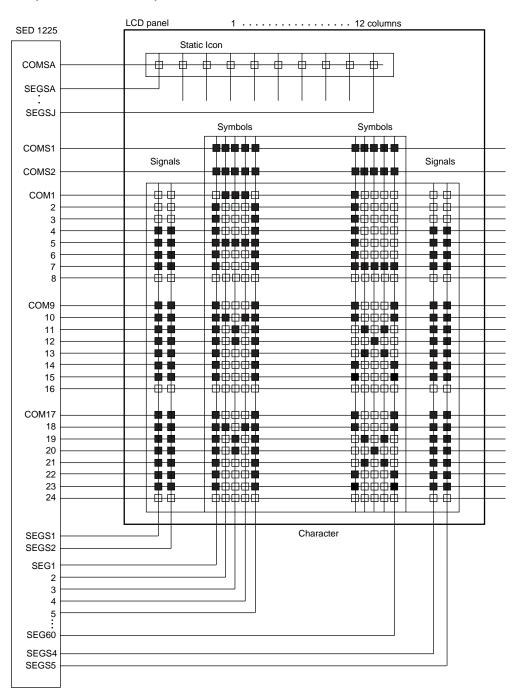
The SED1225 can be connected to the 80-series or 68series MPU. Also, it can operate with a less number of signal lines via the serial interface.

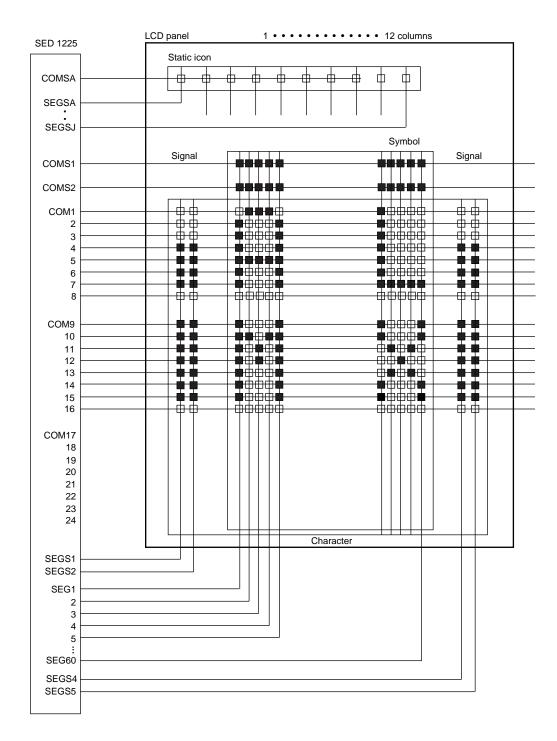

If the MPU buses and ports are set to high impedance for

a certain time due to RESET, the RESET signal must be entered in the SED1225 after the SED1225's inputs have been determined.


80-Series MPU

68-Series MPU

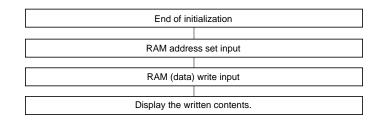



Serial Interface

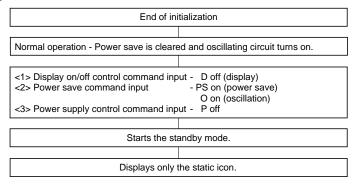
LCD CELL INTERFACE

12 columns by 3 lines, 5×8 dots + Symbols

12 columns by 2 lines (N=1), 5×8 dots + Symbols


LCD DRIVE WAVEFORMS (B WAVEFORMS)

EXAMPLE OF INSTRUCTION SETUP (REFERENCE) Initialization

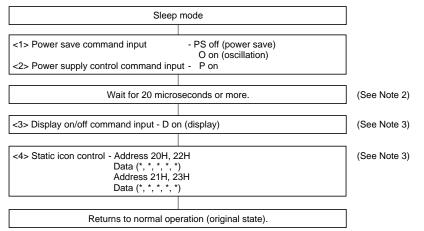

	_
VDD-VSS power on	
	_
Power stable	
	_
Reset input	
Command status - Static display control - off - Display on/off control - off - Power save - off - Power supply control - off - System setup - 3-digit display, CGRAM unused. normal display - Electronic volume - (0, 0, 0, 0, 0) - Static icon - (0, 0, 0, 0, 0) Others are undefined.	
	_
Wait for 10 microseconds or more.	
Command input: asterisked items (*) are in no particular order. <1> NOP command <2> System setup command * Electronic volume resistor set * Power save command <5> Power supply control command - P on <6> RAM address set <7> Data write	(See Note 1) (See Note 1)
Wait for 20 microseconds or more.	(See Note 2)
Command input <8> Display on/off command input - D on (display)	(See Note 3)
Data input <9> Static icon control - Address 20H, 22H Data (*, *, *, *, *) Address 21H, 23H Data (*, *, *, *, *)	(See Note 3) (See Note 3)
	_
End of initialization	
	

Display Mode

Standby Mode

(1) Setting the standby mode

(2) Clearing the standby mode


Standby mode		
<1> Power save command input	 PS off (power save) O on (oscillation) 	
<2> Power supply control command inp	u - P on O on (oscillation) - P off	
Wait for 20 micro	seconds or more.	
<3> Display on/off command input - D on (display)		
Returns to normal ope	eration (original state).	

Sleep Mode

(1) Setting the Sleep mode.

End o	f initialization	
Norm	al operation	
(Power save is cleared	and oscillating circuit turns on.)	
<1> Display on/off control command	input - D off (display)	
<2> Power save icon control	- Address 20H, 22H	(See Note 3)
	Data (0, 0, 0, 0, 0)	
	- Address 21H, 23H	(See Note 3)
	Data (0, 0, 0, 0, 0)	
<3> Power save command input	 PS on (power save) 	
	O off (oscillating)	
<4> Power supply control command	input - P off	
Starts th	ne sleep mode.	

(2) Clearing the sleep mode

- Note 1. <6> and <7> of 15-1 indicate RAM initialization. Set the contents to be displayed in the beginning. For items not to be displayed (RAM Clear), use the following steps:
 - DD RAM write 20H (character code).
 - CG RAM write 00H (data '0').
 - Symbol register write 00H (data '0').

The RAM data is unspecified at the time of reset input (after power is turned on). If the data '0' is not written at this stage, unexpected display may occur to the unset position.

- Note 2. Defined by the rising characteristics of the power circuit, time setting varies according to the external capacity. So be sure to make confirmation by external capacity, and set this time.
- Note 3. The dynamic drive system display lamp is lit up by the display on/off command when it is on. The static icon lamp is lit by the static icon control command. So to light up the lamp simultaneously with start of display, execute the display on/off control command and static icon control within one frame.

OPTION LIST

The SED 1225 has the following options. Options are available exclusively for users. Please contact our Sales Department for information.

• The following shows how to define the name of the product compatible with options:

Example: SED1225D*B

Option compatibility column

Specification of character generator ROM (CGROM)

The SED1225 incorporates a characters generator ROM consisting of up to 256 types of characters, with each character size featuring 5×7 (8) dots. The SED1225 CGROM is designed as a masked ROM, and is compatible with the CGROM for exclusive use of the user. For the standard CGROM, see the Character Font Table.

Specifications of external clock

The SED1225 has an external clock terminal which is provided with two types of functions; fosc and $4 \times$ fosc. Either fosc or $4 \times$ fosc can be selected according to the user's requirements.

	Built-in oscillation fosc	External clock fosc	External clock $4 \times \text{fosc}$
Standard	0	0	×
Optional	0	×	0

The standard external clock specifications are set on the fosc.

CAUTIONS

The following points should be noted when this Development Specification is used:

- 1. This Development Specification is subject to modification for improvement without prior notice.
- 2. This Development Specification is not intended to guarantee enforcement of industrial property and other rights, or to grant license for the use of this product. Examples of applications mentioned in this Development Specification are given for effective understanding of the product. We are not responsible for any circuit problems which might occur due to use of these examples. The size of the values appearing in the characteristics table is represented by the size of the number line.
- 3. Part or whole of this Development Specification shall not be quoted, reproduced or used for other purposes without permission of our company.

For the use of the semi-conductor, take note of the following:

"Handling cautions for light"

According to the principle of the solar battery the semiconductor characteristics are changed when exposed to light. So misoperation may occur if this IC is exposed to light.

For the single IC unit, measures against light are not yet completely taken. The board and the product where this IC is mounted must be provided with the following measures:

- (1) For designing and mounting, measures must be taken to provide the structure which ensures the light protecting properties of the IC during actual use.
- (2) In the inspection process, environmental design must be made with consideration given to the light protecting properties of the IC.
- (3) To ensure light protecting properties of the IC, consideration must be given to the surface, back and sides of the IC chip.

SED1230 Series LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW	
FEATURES	6–1
BLOCK DIAGRAM	6–2
SED1230 SERIES, CHIP SPECIFICATION	6–3
DESCRIPTION OF PINS	6–12
FUNCTIONAL DESCRIPTION	6–15
COMMANDS	6–21
CHARACTER GENERATOR	6–25
ABSOLUTE MAXIMUM RATINGS	6–32
DC CHARACTERISTICS	6–33
TIMING CHARACTERISTICS	6–35
MPU INTERFACE (REFERENCE EXAMPLES)	6–38
INTERFACE TO LCD CELLS (REFERENCE)	6–39
LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS)	6–40
INSTRUCTION SETUP EXAMPLE (Reference Only)	6–41

OVERVIEW

The SED1230 Series is a dot matrix LCD controller driver for character display, and can display a maximum of 48 characters, 4 user-defined characters, and a maximum of 64 symbols by means of 4-bit, 8-bit or serial data sent from a microcomputer.

A built-in character generator ROM is prepared for 256 character types, and each character font consists of 5×7 dots. A user-defined character RAM for four characters of 5×7 dots are incorporated, and a symbol register is also incorporated. With these, it is possible to apply this Series to display with a high degree of freedom. This Series can operate handy units with a minimum power consumption by means of its low power consumption and standby mode.

The SED1230 Series are classified into SED1230, SED1231, SED1232, and SED1233 depending on the duty of use and the number of display columns.

FEATURES

- Built-in display RAM 48 characters + 4 user-defined characters + 64 symbols
- CG ROM (for up to 256 characters), CG RAM (4 characters), and symbol register (64 symbols)

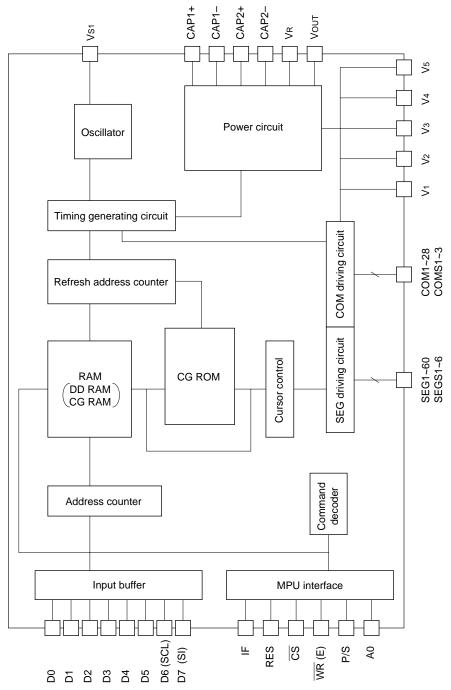
 Number of display columns × number of lines (12 columns + 1 column for signal) × 4 lines + 52 symbols: SED1230

 $(12 \text{ columns} + 1 \text{ column for signal}) \times 3 \text{ lines} + 52 \text{ symbols: SED1231}$

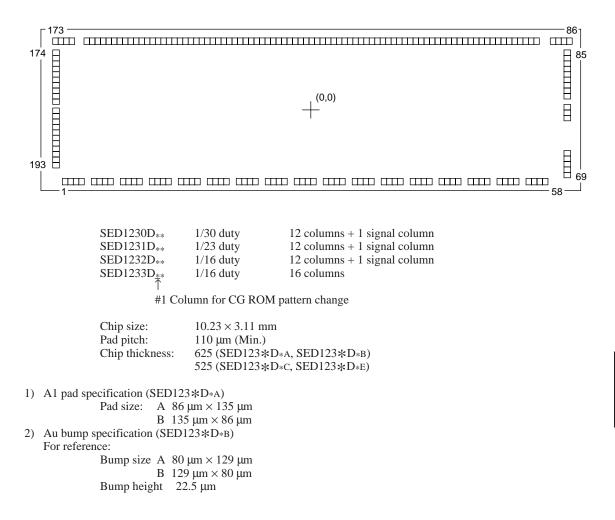
(12 columns + 1 column for signal) \times 2 lines + 52 symbols: SED1232

16 columns \times 2 lines + 64 symbols: SED1233

- CR oscillation circuit (on-chip C and R)
- High-speed MPU interface Interfacing with both 68 series and 80 series MPU Interfacing in 4 bits/8 bits
- Serial interface
- Character font 5×7 dots
- Duty ratio
 1/16 (SED1232, SED1233)
 1/23 (SED1231)
 1/30 (SED1230)
- Simple command setting
- Built-in liquid crystal driving power circuit Power boosting circuit, power regulating circuit, voltage follower × 4
- Built-in electronic volume function
- Low power consumption
 - 100 μA Max. (In normal operation mode: Including the operating current of the built-in power supply)
 20 μA Max. (In standby display mode)


20 µA Max

 Power supply VDD - Vss (logic section): -2.4 V to -3.6 V VDD - V5 (liquid crystal drive section)


- Wide operating temperature range Ta = -30 to $85^{\circ}C$
- CMOS process
- Delivery form: Chip SED123*D*B, SED123*D*E (Gold bump product)
 - SED123*D*A, SED123*D*C (A1 pad product) TCP SED123*T**
- This IC is not designed with a protection against radioactive rays.

^{: -5.0} V to -11.0 V

BLOCK DIAGRAM

SED1230 SERIES, CHIP SPECIFICATION

<SED1230D**>

Р	AD	COOR	DINATES	P	PAD	COOR	DINATES
No.	Name	Х	Y	No.	Name	Х	Y
1	(NC)	-4793	-1371	55	CAP1-	2693	-1371
2		-4683		56	+	2803	
3		-4572		57	CAP1+	3024	
4	•	-4462		58		3134	
5	VDD	-4242		59		3244	
6		-4132		60 61	Vss	3354	
7 8		-4021 -3911		62	V 55	3592 3702	
8 9	Vss	-3691		63		3812	
10	V 33	-3581		64	↓ ↓	3923	
11		-3470		65	Vdd	4143	
12	↓	-3360		66		4253	
13	V5	-3140		67		4363	
14		-3030		68	+	4474	¥
15		-2919		69	(NC)	4883	-1343
16	+	-2809		70	(NC)		-1233
17	V4	-2589		71	(NC)	Ţ	-1123
18		-2479		72	(NC)	1000	-1013
19		-2368		73 74	Vs1 P/S	4929	-902
20 21	V3	-2258 -2021		74	IF		-186 -76
22	V 3	-1910		76	RES		-70 34
23		-1800		77	COMS1		255
24	↓ ↓	-1690		78	COMS2		365
25	V2	-1453		79	COM 1		475
26		-1342		80	COM 2		585
27		-1232		81	COM 3		696
28	↓	-1122		82	COM 4		806
29	V1	-884		83	COM 5		916
30		-774		84	COM 6		1026
31		-664		85	COM 7	*	1136
32 33	V0	-554		86 87	(NC)	4947	1382
33 34	V0	-316 -206		88		4836 4726	
34 35		-200 -96		89		4616	
36		14		90	COM 8	4347	
37	VR	235		91	COM 9	4237	
38		345		92	COM10	4127	
39		455		93	COM11	4017	
40	.↓	565		94	COM12	3906	
41	Vout	803		95	COM13	3796	
42		913		96	COM14	3686	
43		1023		97	SEGS2	3576 3466	
44 45	CAP2-	1133 1354		98 99	SEGS3 SEGS4	3466 3355	
45 46		1464		100	SEG 1	3245	
40		1574		101	SEG 2	3135	
48	↓	1684		102	SEG 3	3025	
49	CAP2+	1905		103	SEG 4	2915	
50		2015		104	SEG 5	2804	
51		2125		105	SEG 6	2694	
52	†	2235		106	SEG 7	2584	
53	CAP1-	2473	L I	107	SEG 8	2474	
54	•	2583	۲	108	SEG 9	2364	*

Р	AD	COOR	DINATES	F	PAD	COOR	DINATES
No.	Name	Х	Y	No.	Name	Х	Y
109	SEG10	2253	-1382	163	COM28	-3697	1382
110	SEG11	2143		164	COM27	-3808	
111	SEG12	2033		165	COM26	-3918	
112	SEG13	1923		166	COM25	-4028	
113	SEG14	1813		167	COM24	-4138	
114	SEG15	1702		168	COM23	-4248	
115	SEG16	1592		169	COM22	-4359	
116	SEG17	1482		170	(NC)	-4627	
117	SEG18	1372		171		-4738	
118	SEG19	1262		172		-4848	
119	SEG20	1151		173	↓ ↓	-4958	*
120	SEG21	1041		174	COM21	-4940	1136
121	SEG22	931		175	COM20		1026
122	SEG23	821		176	COM19		916
123	SEG24	711		177	COM18		806
124	SEG25	600		178	COM17		696
125	SEG26	490		179	COM16		585
126	SEG27	380		180	COM15		475
127	SEG28	270		181	COMS3		365
128	SEG29	160		182	SEGS1		255
129	SEG30	49		183	AO		34
130	SEG31	-61		184	WR		-76
131	SEG32	-171		185	CS		-186
132	SEG33	-281		186	D7		-296
133	SEG34	-391		187	D6		-406
134	SEG35	-502		188	D5		-517
135	SEG36	-612		189	D4		-627
136	SEG37	-722		190	D3		-737
137	SEG38	-832		191	D2		-847
138	SEG39	-942		192	D1		-957
139	SEG40	-1053		193	D0	*	-1068
140	SEG41	-1163					
141	SEG42	-1273					
142	SEG43	-1383					
143	SEG44	-1493					
144	SEG45	-1604					
145	SEG46	-1714					
146	SEG47	-1824					
147	SEG48	-1934					
148	SEG49	-2044					
149	SEG50	-2155					
150	SEG51	-2265					
151	SEG52	-2375					
152	SEG53	-2485					
153	SEG54	-2595					
154	SEG55	-2706					
155	SEG56	-2816					
156	SEG57	-2926					
157	SEG58	-3036					
158	SEG59	-3146					
159	SEG60	-3257					
160	SEGS4	-3367					
161	SEGS5	-3477					
162	SEGS6	-3587	I I				

<SED1231D**>

P	AD	COOR	DINATES	P	PAD	COOR	DINATES
No.	Name	Х	Y	No.	Name	Х	Y
1	(NC)	-4793	-1371	55	CAP1-	2693	-1371
2		-4683		56	+	2803	
3		-4572		57	CAP1+	3024	
4	+	-4462		58		3134	
5	VDD	-4242		59		3244	
6		-4132		60	†	3354	
7		-4021		61	Vss	3592	
8	•	-3911		62		3702	
9	Vss	-3691		63		3812	
10		-3581		64	Voo	3923	
11 12		-3470		65	Vdd	4143 4253	
12	V5	-3360 -3140		66 67		4253 4363	
13		-3030		68		4303	Ļ
15		-2919		69	(NC)	4883	-1343
16		-2809		70	(NC)	4005	-1233
17	V4	-2589		71	(NC)		-1123
18		-2479		72	(NC)	+	-1013
19		-2368		73	VS1	4929	-902
20	↓ ↓	-2258		74	P/S	1020	-186
21	V3	-2021		75	IF		-76
22		-1910		76	RES		34
23		-1800		77	COMS1		255
24	↓ ↓	-1690		78	COMS2		365
25	V2	-1453		79	COM 1		475
26		-1342		80	COM 2		585
27		-1232		81	COM 3		696
28	↓	-1122		82	COM 4		806
29	V1	-884		83	COM 5		916
30		-774		84	COM 6		1026
31		-664		85	COM 7	+	1136
32	+	-554		86	(NC)	4947	1382
33	Vo	-316		87		4836	
34		-206		88		4726	
35		-96		89	0014.0	4616	
36	*	14		90	COM 8	4347	
37	VR	235		91	COM 9	4237 4127	
38 39		345 455		92 93	COM10 COM11	4127 4017	
39 40		400 565		93	COM11 COM12	3906	
40 41	Vout	803		95	COM12 COM13	3796	
42		913		96	COM14	3686	
43		1023		97	SEGS2	3576	
44	↓	1133		98	SEGS3	3466	
45	CAP2-	1354		99	SEGS4	3355	
46		1464		100	SEG 1	3245	
47		1574		101	SEG 2	3135	
48	↓	1684		102	SEG 3	3025	
49	CAP2+	1905		103	SEG 4	2915	
50		2015		104	SEG 5	2804	
51		2125		105	SEG 6	2694	
52	*	2235		106	SEG 7	2584	
53	CAP1-	2473		107	SEG 8	2474	
54	*	2583	▼	108	SEG 9	2364	*

P	PAD	COOR	DINATES	F	PAD	COOR	DINATES
No.	Name	Х	Y	No.	Name	Х	Y
$\begin{array}{c} 109\\ 100\\ 111\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 120\\ 121\\ 122\\ 123\\ 124\\ 125\\ 126\\ 127\\ 128\\ 129\\ 130\\ 131\\ 132\\ 133\\ 134\\ 135\\ 136\\ 137\\ 138\\ \end{array}$	SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG31 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38 SEG37 SEG38 SEG39	$\begin{array}{c} 2253\\ 2143\\ 2033\\ 1923\\ 1813\\ 1702\\ 1592\\ 1482\\ 1372\\ 1262\\ 1151\\ 1041\\ 931\\ 821\\ 711\\ 600\\ 490\\ 380\\ 270\\ 160\\ 49\\ -61\\ -171\\ -281\\ -391\\ -502\\ -612\\ -722\\ -832\\ -942\\ \end{array}$	Y 1382	163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 181 182 183 184 185 186 187 188 189 190 191 192	Name (NC) (NC) COM21 COM20 COM19 COM15 COM33 SEGS1 A0 WR CS D7 D6 D5 D4 D3 D2 D1 D0	X -3697 -3808 -3918 -4028 -4138 -4248 -4359 -4627 -4738 -4848 -4958 -4940	1382 1382 1136 1026 916 806 696 585 475 365 255 34 -76 -186 -296 -406 -517 -627 -737 -847 -957
$\begin{array}{c} 139\\ 140\\ 141\\ 142\\ 143\\ 144\\ 145\\ 146\\ 147\\ 148\\ 149\\ 150\\ 151\\ 152\\ 153\\ 154\\ 155\\ 156\\ 157\\ 158\\ 159\\ 160\\ 161\\ 162\\ \end{array}$	SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49 SEG50 SEG51 SEG52 SEG53 SEG56 SEG56 SEG57 SEG58 SEG59 SEG59 SEG55 SEG56 SEG55 SEG58 SEG59 SEG55 SEG56 SEG55 SEG58 SEG59 SEG55 SEG55 SEG55 SEG56	$\begin{array}{c} -1053 \\ -1163 \\ -1273 \\ -1383 \\ -1493 \\ -1604 \\ -1714 \\ -1824 \\ -1934 \\ -2044 \\ -2155 \\ -2265 \\ -2375 \\ -2485 \\ -2595 \\ -2706 \\ -2816 \\ -2926 \\ -3036 \\ -3146 \\ -3257 \\ -3367 \\ -3477 \\ -3587 \end{array}$		193			-1068

<SED1232D**>

Р	AD	COOR	DINATES	P	AD	COOR	DINATES
No.	Name	Х	Y	No.	Name	Х	Y
1	(NC)	-4793	-1371	55	CAP1-	2693	-1371
2		-4683		56	+	2803	
3		-4572		57	CAP1+	3024	
4	•	-4462		58		3134	
5	VDD	-4242		59		3244	
6 7		-4132 -4021		60 61	Vss	3354 3592	
8		-3911		62	V 55	3702	
9	Vss	-3691		63		3812	
10		-3581		64	↓ ↓	3923	
11		-3470		65	Vdd	4143	
12	↓	-3360		66		4253	
13	V5	-3140		67		4363	
14		-3030		68	+	4474	↓
15		-2919		69	(NC)	4883	-1343
16	•	-2809		70	(NC)		-1233
17	V4	-2589		71	(NC)		-1123
18		-2479		72	(NC)	4020	-1013
19		-2368		73 74	Vs1 P/S	4929	-902 -186
20 21	V3	-2258 -2021		74	IF		-76
22		-1910		76	RES		34
23		-1800		77	COMS1		255
24	↓ ↓	-1690		78	COMS2		365
25	V2	-1453		79	COM 1		475
26		-1342		80	COM 2		585
27		-1232		81	COM 3		696
28	+	-1122		82	COM 4		806
29	V1	-884		83	COM 5		916
30		-774		84	COM 6		1026
31 32		664 554		85 86	COM 7	▼ 4947	1136 1382
32	V0	-316		87	(NC)	4947 4836	1302
34		-206		88		4726	
35		-96		89	↓	4616	
36	↓ ↓	14		90	COM 8	4347	
37	VR	235		91	COM 9	4237	
38		345		92	COM10	4127	
39		455		93	COM11	4017	
40	+	565		94	COM12	3906	
41	Vout	803		95	COM13	3796	
42		913		96	COM14	3686	
43 44		1023 1133		97 98	SEGS2 SEGS3	3576 3466	
44 45	CAP2-	1354		90	SEGSS SEGS4	3355	
40		1464		100	SEG 1	3245	
47		1574		101	SEG 2	3135	
48	↓	1684		102	SEG 3	3025	
49	CAP2+	1905		103	SEG 4	2915	
50		2015		104	SEG 5	2804	
51		2125		105	SEG 6	2694	
52		2235		106	SEG 7	2584	
53 54	CAP1-	2473	↓	107	SEG 8	2474	
54	•	2583	•	108	SEG 9	2364	•

P	AD	COORI	DINATES	F	PAD	COOR	DINATES
No.	Name	X	Y	No.	Name	Х	Y
109	SEG10	2253	1382	163	(NC)	-3697	1382
110	SEG11	2143		164		-3808	
111	SEG12	2033		165		-3918	
112	SEG13	1923		166		-4028	
113	SEG14	1813		167		-4138	
114	SEG15	1702		168		-4248	
115	SEG16	1592		169		-4359	
116	SEG17	1482		170		-4627	
117	SEG18	1372		171		-4738	
118	SEG19	1262		172		-4848	
119	SEG20	1151		173	↓	-4958	★
120	SEG21	1041		174	COM14	-4940	1136
121	SEG22	931		175	COM13		1026
122	SEG23	821		176	COM12		916
123	SEG24	711		177	COM11		806
124	SEG25	600		178	COM10		696
125	SEG26	490		179	COM 9		585
126	SEG27	380		180	COM 8		475
127	SEG28	270		181	COMS3		365
128	SEG29	160		182	SEGS1		255
129	SEG30	49		183	AO		34
130	SEG31	-61		184	WR		-76
131	SEG32	-171		185	CS		-186
132	SEG33	-281		186	D7		-296
133	SEG34	-391		187	D6		-406
134	SEG35	-502		188	D5		-517
135	SEG36	-612		189	D4		-627
136	SEG37	-722		190	D3		-737
137	SEG38	-832		191	D2		-847
138	SEG39	-942		192	D1		-957
139	SEG40	-1053		193	D0	*	-1068
140	SEG41	-1163					
141	SEG42	-1273					
142	SEG43	-1383					
143	SEG44	-1493					
144	SEG45	-1604					
145	SEG46	-1714					
146	SEG47	-1824					
147	SEG48	-1934					
148	SEG49	-2044					
149	SEG50	-2155					
150	SEG51	-2265					
151	SEG52	-2375					
152	SEG53	-2485					
153	SEG54	-2595					
154	SEG55	-2706					
155	SEG56	-2816					
156	SEG57	-2926					
157	SEG58	-3036					
158	SEG59	-3146					
159	SEG60	-3257					
160	SEGS4	-3367					
161	SEGS5	-3477					
	SEGS6	-3587					

<SED1233D**>

Р	AD	COOR	DINATES	Р	AD	COOR	DINATES
No.	Name	X	Y	No.	Name	Х	Y
1	(NC)	-4793	-1371	55	CAP1-	2693	-1371
2		-4683		56	+	2803	
3		-4572		57	CAP1+	3024	
4	↓	-4462		58		3134	
5	VDD	-4242		59		3244	
6 7		-4132		60 61	Vss	3354	
8		-4021 -3911		62	V 55	3592 3702	
9	Vss	-3691		63		3812	
10		-3581		64	↓ ↓	3923	
11		-3470		65	Vdd	4143	
12	↓	-3360		66		4253	
13	V5	-3140		67		4363	
14		-3030		68	•	4474	
15		-2919		69	(NC)	4883	-1343
16	+	-2809		70	(NC)		-1233
17	V4	-2589		71	(NC)		-1123
18		-2479		72	(NC)	4000	-1013
19		-2368		73 74	Vs1 P/S	4929	-902
20 21	V3	-2258 -2021		74	IF		-186 -76
21		-1910		76	RES		34
23		-1800		77	COMS1		255
24	↓ ↓	-1690		78	COMS2		365
25	V2	-1453		79	COM 1		475
26		-1342		80	COM 2		585
27		-1232		81	COM 3		696
28	↓	-1122		82	COM 4		806
29	V1	-884		83	COM 5		916
30		-774		84	COM 6		1026
31		-664		85	COM 7	*	1136
32	V0	-554		86 87	(NC)	4947	1382
33 34		-316 -206		88		4836 4726	
35		-200		89		4616	
36		14		90	SEG 1	4347	
37	VR	235		91	SEG 2	4237	
38		345		92	SEG 3	4127	
39		455		93	SEG 4	4017	
40	↓	565		94	SEG 5	3906	
41	Vout	803		95	SEG 6	3796	
42		913		96	SEG 7	3686	
43		1023		97	SEG 8	3576	
44 45	CAP2-	1133 1354		98 99	SEG 9 SEG10	3466 3355	
45 46		1354		100	SEG10 SEG11	3355 3245	
40		1574		100	SEG12	3135	
48		1684		101	SEG13	3025	
49	CAP2+	1905		102	SEG14	2915	
50		2015		104	SEG15	2804	
51		2125		105	SEG16	2694	
52	+	2235		106	SEG17	2584	
53	CAP1-	2473		107	SEG18	2474	
54	↓ ★	2583	•	108	SEG19	2364	*

P	AD	COORI	DINATES	F	PAD	COOR	DINATES
No.	Name	Х	Y	No.	Name	Х	Y
109	SEG20	2253	1382	163	SEG74	-3697	1382
110	SEG21	2143		164	SEG75	-3808	
111	SEG22	2033		165	SEG76	-3918	
112	SEG23	1923		166	SEG77	-4028	
113	SEG24	1813		167	SEG78	-4138	
114	SEG25	1702		168	SEG79	-4248	
115	SEG26	1592		169	SEG80	-4359	
116	SEG27	1482		170	(NC)	-4627	
117	SEG28	1372		171	l ì l	-4738	
118	SEG29	1262		172		-4848	
119	SEG30	1151		173	↓ ↓	-4958	↓
120	SEG31	1041		174	COM14	-4940	1136
121	SEG32	931		175	COM13		1026
122	SEG33	821		176	COM12		916
123	SEG34	711		177	COM11		806
124	SEG35	600		178	COM10		696
125	SEG36	490		179	COM 9		585
126	SEG37	380		180	COM 8		475
120	SEG38	270		181	COMS3		365
128	SEG39	160		182	SEGS1		255
120	SEG40	49		183	_A0_		34
130	SEG40 SEG41	-61		184	WR		-76
130	SEG41 SEG42	-171		185	CS		-186
132	SEG42 SEG43	-281		185	D7		-296
132	SEG43 SEG44	-391		187	D7 D6		-290
133	SEG44 SEG45	-502		188	D5		-517
134	SEG45 SEG46	-612		189	D3		-627
136	SEG40 SEG47	-722		190	D4 D3		-737
130	SEG47 SEG48	-832		190	D3		-847
137	SEG48 SEG49	-942		191	D2		-957
130	SEG49 SEG50	-1053		192	D1 D0		-1068
139	SEG50 SEG51	-1163		193	DU		-1068
140							
141	SEG52	-1273					
	SEG53	-1383					
143	SEG54	-1493					
144	SEG55	-1604					
145 146	SEG56 SEG57	-1714 -1824					
140							
	SEG58	-1934					
148	SEG59	-2044					
149	SEG60	-2155					
150	SEG61	-2265					
151	SEG62	-2375					
152	SEG63	-2485					
153	SEG64	-2595					
154	SEG65	-2706					
155	SEG66	-2816					
156	SEG67	-2926					
157	SEG68	-3036					
158	SEG69	-3146					
159	SEG70	-3257					
160	SEG71	-3367					
161 162	SEG72	-3477					
	SEG73	-3587					

DESCRIPTION OF PINS

Power Pins

Pin name	I/O	Description	Q'ty
Vdd	Power supply	Logic + power pin. Also used as MPU power pin Vcc.	2
Vss	Power supply	Logic – power pin. Connected to the system GND.	2
V0, V1	Power supply	Multi-level power supply for liquid crystal drive.	6
V2, V3		The voltage determined in the liquid crystal cell is resistance-	
V4, V5		divided or impedance-converted by operational amplifier, and the	
		resultant voltage is applied.	
		The potential is determined on the basis of VDD and the following	
		equation must be respected.	
		$VDD = V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$	
		$VDD \ge VSS \ge V5 \ge VOUT$	
		When the built-in power supply is ON, the following voltages are	
		given to pins V1 to V4 by built-in power circuit:	
		$V_1 = 1/5 V_5$	
		$V_2 = 2/5 V_5$	
		$V_3 = 3/5 V_5$	
		$V4 = 4/5 V_5$	
Vs1	0	Power supply voltage output pin for oscillating circuit.	1
		Don't connect this pin to an external load.	

LCD Power Circuit Pins

Pin name	I/O	Description	Q'ty
CAP1+	0	Capacitor positive side connecting pin for boosting.	1
		This pin connects the capacitor with pin CAP1	
CAP1-	0	Capacitor negative side connecting pin for boosting.	1
		This pin connects a capacitor with pin CAP+.	
CAP2+	0	Capacitor positive side connecting pin for boosting.	1
		This pin connects a capacitor with pin CAP2	
CAP2-	0	Capacitor negative side connecting pin for boosting.	1
		This pin connects a capacitor with pin CAP2+.	
Vout	0	Output pin for boosting. This pin connects a smoothing capacitor	1
		with Vss pin.	
VR	I	Voltage regulating pin. This pin gives a voltage between VDD and	1
		V5 by resistance-division of voltage.	

Pins for System Bus Connection

Pin name	I/O	Description	Q'ty
D7 (SI) D6 (SCL) D5 ~ D0	Ι	8-bit input data bus.These pins are connected to a 8-bit or 16-bit standard MPU data bus.When P/S = "Low", the D7 and D6 pins are operated as a serial data input and a serial clock input respectively. P/S D7D6D5 ~ D0 \overline{CS} A0"Low"SISCL— \overline{CS} A0"High"D7D6D5 ~ D0 \overline{CS} A0	8
AO	Ι	Usually, this pin connects the least significant bit of the MPU address bus and identifies a data command. 0 : Indicates that D0 to D7 are a command. 1 : Indicates that D0 to D7 are display data.	1
RES	Ι	In case of a 68 series MPU, initialization can be performed by changing RES □. In case of an 80 series MPU, initialization can be performed by changing 1. A reset operation is performed by edge sensing of the RES signal. An interface type for the 68/80 series MPU is selected by input level after initialization. "L" : 68 series MPU interface "H" : 80 series MPU interface	1
CS	I	Chip select signal. Usually, this pin inputs the signal obtained by decoding an address bus signal. At the "Low" level, this pin is enabled.	1
WR (E)	I	<when 80="" an="" connecting="" mpu="" series=""> Active "Low". This pin connects the WR signal of the 80 series MPU. The signal on the data bus is fetched at the rise of the WR signal. <when 68="" a="" connecting="" mpu="" series=""> Active "High". This pin becomes an enable clock input of the 68 series MPU.</when></when>	1
P/S	I	This pin switches between serial data input and parallel data input.P/SChip SelectData/CommandDataSerial Clock"High"CSA0D0~D7-"Low"CSA0SISCL	1
IF	I	Interface data length select pin for parallel data input. "High": 8-bit parallel input "Low": 4-bit parallel input When P/S = "Low", connect this pin to VDD or VSS.	1

Liquid Crystal Drive Circuit Signals

SED1230, SED1231, SED1232

Pin name	I/O	Description	Q'ty
COM1~ COM28	0	Common signal output pin (for characters)	28
COMS1~ CMOS3	0	Common signal output pin (except for characters) CMOS1: Common output for static drive. In the standby mode only, a Vss amplitude is output. CMOS2, CMOS3: Common output for symbol display	3
SEG1~ SEG60	0	Segment signal output pin (for characters)	60
SEGS1~ SEGS6	ο	Segment signal output pin (except for characters) SEGS1: Segment output for static drive. In the standby mode only, a Vss amplitude is output. SEGS2, SEGS6: Segment output for signal output	7

SED1233

Pin name	I/O	Description	Q'ty
COM1~ COM14	0	Common signal output pin (for characters)	14
COMS1~ CMOS3	0	Common signal output pin (except for characters) CMOS1: Common output for static drive. In the standby mode only, a Vss amplitude is output. CMOS2, CMOS3: Common output for symbol display	3
SEG1~ SEG80	0	Segment signal output pin (for characters)	80
SEGS1	о	Segment signal output pin (except for characters) SEGS1: Segment output for static drive. In the standby mode only, a Vss amplitude is output.	1

FUNCTIONAL DESCRIPTION

MPU Interface

Selection of interface type

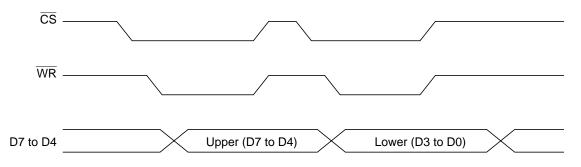
In the SED1230 Series, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting "High" or "Low" as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table 1.

Table 1

					-		
P/S	Туре	CS	A0	WR	SI	SCL	D0~D7
"High"	Parallel Input	CS	A0	WR			D0~D7
"Low"	Serial Input	CS	A0	_	SI	SCL	_

Parallel Input

In the SED1230 Series, when parallel input is selected (P/S = "High"), it can be directly connected to the 80 series MPU bus or 68 series MPU bus, as shown in Table 2, if either "High" or "Low" is selected as RES pin polarity after a reset input, because the RES pin has an MPU select function.


Selection between 8 bits and 4 bits is performed by command.

RES input polarity	Туре	A0	WR	CS	D0~D7
□, active	68 series	A0	E	CS	D0~D7
active	80 series	A0	WR	CS	D0~D7

Table 2

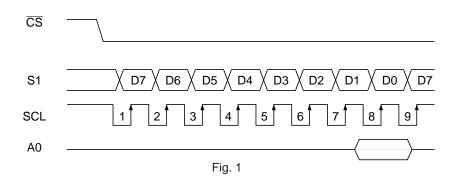
Interface with 4-bit MPU interface

When data transfer is performed by 4-bit interface (IF = 0), an 8-bit command, data and address are divided into two parts.

Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then perform writing.

Serial interface (P/S = "Low")

The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled in the ship selected status (CS = "Low").


When no chip is selected, the shift register and counter are reset to the initial status.

Serial data is input in the order of D7, D6 D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL). At the rising edge of the 8th serial clock, the serial data is converted into 8-bit parallel data and this data is processed. The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when A0 = "High", it is regarded as display data. When A0 = "Low", it is regarded as a command.

The A0 input is read in and identified at the rise of the 8 x n-th clock of Serial Clock (SCL) after chip selection. Fig. 1 shows a timing chart of the serial interface.

Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length. We recommend the user to perform an operation check with a real machine.

We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.

Identification of data bus signals

The SED1230 series identifies data bus signals, as shown in Table 3, by combinations of A0 and \overline{WR} (E).

Common	68 series	80 series	Function
A0	E	WR	Function
1	1	0	Writing to RAM and symbol register
0	1	0	Writing to internal register (command)

Table 3

Chip select

The SED1230 series has a chip select pin (\overline{CS}) . Only when \overline{CS} = "Low", MPU interfacing is enabled. In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is input regardless of the \overline{CS} status.

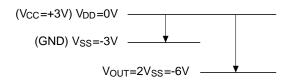
Power Circuit

This is a low-power-consumption power circuit that generates a voltage required for liquid crystal drive. The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.

The power circuit incorporated in the SED1230 Series is set for a small-scale liquid crystal panel, so that its display quality may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity. In this case, an external power supply must be used.

A power circuit function can be selected by power control command. With this, an external power supply and a part of the internal power supply can be used together.

	Boosting circuit	Voltage regulat- ing circuit	Voltage follower	External voltage input	Boosting system pin
	0	0	0	—	
Note 1	×	0	0	Vout	OPEN
Note 2	×	×	0	V5 = VOUT	OPEN
Note 3	×	×	×	V1, V2, V3, V4, V5	OPEN


Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open and give a liquid crystal drive voltage to the VOUT pin from the outside.

Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins open, connect between the V5 pin and VOUT pin, and give a liquid crystal drive voltage from the outside.

Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages V1, V2, V3, V4 and V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and VOUT pins open.

Triple boosting circuit

When a capacitor is connected between CAP1+ and CAP1-, between CAP2+ and CAP2-, and between Vss pin and VOUT pin respectively, the potential between the VDD pin and Vss pin is boosted triple and output to the VOUT pin. In case of double boosting, remove the capacitor between CAP2+ and CAP2- in connection for triple boosting operation and strap between CAP2- and

Potential during double boosting

Voltage regulating circuit

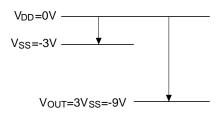
The voltage regulation circuit regulates the boosted voltage developed at Vout. It outputs the regulated LCD driving voltage at the V5 terminal. An internal resistor can be inserted into the regulation circuit feedback loop providing the following voltage levels at the V5 terminal.

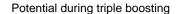
When V5 is required to be different than the above case, leave the internal feedback resistor out of the circuit. V5 can be regulated within a range of |V5|<|V0UT|. It may be calculated by the following formula:

$$V_5 = (1 + \frac{R_b}{R_a}) \bullet V_{REG}$$

Wherein, VREG is the constant voltage source inside the SED1230 Series and the voltage is constant at VREG = 3.1V. The voltage regulation VREG = 2.1V (TYP.) in option 1, and VREG = VSS in option 2. Voltage regulation of the V5 output is accomplished by connecting a variable resistor between VR, VDD and V5. For fine adjustment of the V5 voltage, use a combination of fixed resistors R1 and R3 and a variable resistor R2.

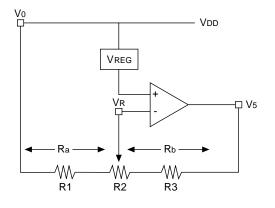
Example 1:


Condition: $I(R1, R2, R3) \le 5\mu A$ $V_5 = -6 \text{ to } -8V$


$$\begin{array}{ll} \text{Setting:} & R1 + R2 + R3 = 8V/5 \mu A = 1.6 M \Omega \\ & 8V = (1 + Rb/Ra) \; 3.0V \quad Rb/Ra = 1.67 \\ & 6V = (1 + Rb/Ra) \; 3.0V \quad Rb/Ra = 1 \end{array} \right\} \; \cdots \; \left\{ \begin{array}{l} R1 = 600 K \Omega \\ R2 = 200 K \Omega \\ R3 = 800 K \Omega \end{array} \right.$$

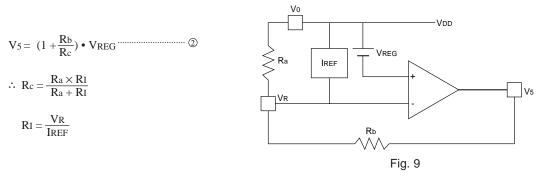
VOUT pin. Then, a double boosted output can be obtained from the VOUT pin (CAP2-).

The boosting circuit uses a signal from the oscillator output.


Accordingly, it is necessary that the oscillating circuit must be in operation. The potential relationship of boosting is shown below.

The voltage regulator circuit carries a temperature gradient of about -0.17% °C under VREG outputs (standard specification), about -0.04% °C (option). When any other temperature gradient is required, connect a thermistor in series to the output voltage regulating register.

Since the VR terminal has a high input impedance, it is necessary to take noise suppression measures such as shortening the input wiring and shielding the wiring run.



• Voltage Regulation Circuit Using Electronic Contrast Control Register

The contrast control register controls the liquid crystal driving voltage (V5). This is accomplished by an electronic volume control register set command that adjusts the contrast of the liquid crystal display (see section 1-22).

The commands provide 4-bits of voltage level data to the electronic volume control register. This provides for the selection of 16 different voltage levels for the liquid crystal driving voltage. When using the electronic volume control function, it is necessary to close the voltage regulation circuit using electronic control commands. For reference information, when the electronic volume control registor value is at (1, 1, 1, 1), the constant current value becomes: IREF \Rightarrow 3.65uA.

[An exemplary constant setting when the electronic volume control function is being used]

- Determining the V5 voltage setting range by the electronic volume control Liquid crystal driving voltage V5: max. -6V ~ min. -8V V5 variable voltage range: 2V
- (2) Determining the Rb
 - Rb = V5 variable voltage range/ IREF (IREF $\equiv 3.65\mu$ A Constant current) = 2V/3.65 μ A
 - = 548KΩ
- (3) Determining the Ra

 $R_a = \frac{V_{REG}}{(V_5 \text{ voltage setting max - } V_{REG}) / R_b}$ (Use absolute values for V_{REG} and V_5 voltage settings.)

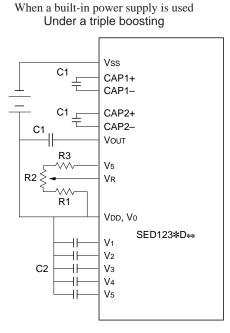
$$=\frac{3.1V}{(6V-3.1V)/548K\Omega}$$

 $= 585 \mathrm{K}\Omega$

(4) Regulating the Ra

Set the electronic volume control register to (D3, D2, D1, D0) = (1, 0, 0, 0) or (0, 1, 1, 1) before matching the Ra value to the optimum contrast.

Since IREF is a simplified constant voltage source, fluctuations upto $\pm 40\%$ must be taken into consideration, as a dispersion range during manufacture. Meanwhile, the temperature dependency of IREF is: Δ IREF $= -0.037\mu$ A/°C. Determine the Ra and Rb for the using LCD panel in consideration of the above dispersion and the variation by the temperature.


When using the electronic volume control function, in order to compensate the V5 voltage for dispersion of VREG and IREF, use a variable registor as R_a and perform optimum contrast adjustment according to the above item (4) with each IC chip.

When the electronic volume control function is not being used, set the electronic volume control register to (0, 0, 0, 0) using the RES signal or the electronic volume control register setting command.

Liquid crystal voltage generating circuit

The V5 potential is resistance-divided inside the IC so that V1, V2, V3 and V4 potentials are generated for liquid crystal drive.

Furthermore, the V1, V2, V3 and V4 are impedanceconverted by voltage follower and the then supplied to

When an external power regulator is used (The built-in power regulator is not used)

Vss

CAP1+

CAP1-

CAP2+

CAP2-

Vout

V5

Vr

V1

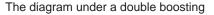
V2

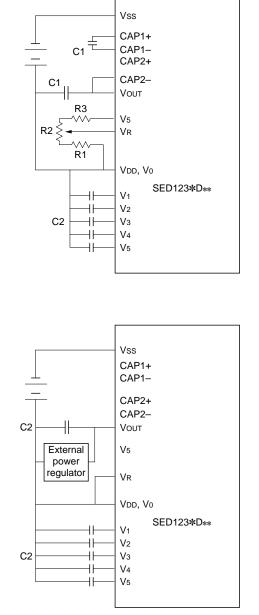
Vз

V4

VDD, VO

C1

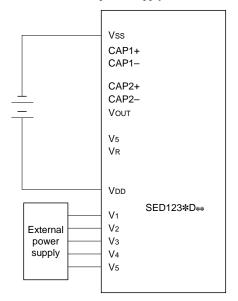

C1 C1


External

power regulator the liquid crystal drive circuit.

The liquid crystal drive voltage is fixed to 1/5 bias.

As shown in the diagrams below, the capacitor (C2) for voltage stabilization must be externally connected to the V1 to V5 pins of liquid crystal power pins.



SED123*D**

Reference setting values: C1: $0.1 - 4.7 \,\mu\text{F}$ C2: $0.1 \,\mu\text{F}$

C2

We recommend the user to set the optimum values to capacitors C1 and C2 according to the panel size watching the liquid crystal display and drive waveforms. When a built-in power supply is not used

Low Power Consumption Mode

The SED1230 Series is provided with the standby mode and sleep mode with the object of low power consumption when the unit is in the standby state.

© Standby Mode

The standby mode is turned on and off by power save command.

In the standby mode only, static display is enabled by CMOS1 and SEGS1.

1. Liquid crystal display output

COM1 ~ COM28, COMS2, COMS3	:	VDD level
SEG1 ~ SEG60, SEGS2 ~ SEGS6	:	VDD level
COMS1, SEGS1	:	Lighting is
		enabled by
		static drive.

Perform display control using CMOS1 and SEGS1 by static display control command.

- DD RAM, CG RAM and symbol register Written contents do not change and are stored regardless of whether the standby mode is turned on or off.
- 3. In the operation mode, the status precedent to execution of the standby mode is held.

The internal circuit for dynamic display output stops. 4. Oscillating circuit

For static display, the oscillating circuit must be ON.

© Sleep Mode

After the power circuit and oscillating circuit are turned off by command and the power save command is executed, the sleep mode is set. This mode permits reducing current consumption nearly to the static current value.

- Liquid crystal display output COM1 ~ COM28, COMS2, COMS3 : VDD level SEG1 ~ SEG60, SEGS2 ~ SEGS6 : VDD level COMS1 ~ SEGS1 : VDD level
- DD RAM, CG RAM and symbol register Written contents do not change and are stored regardless of whether the sleep mode is turned on or off.
- 3. In the operation mode, the status precedent to execution of the sleep mode is held. All the internal circuits stops.
- 4. Power circuit and oscillating circuit Turn off the built-in power supply and oscillating circuit by power save command and power control command.

Reset Circuit

When the RES input goes active, this LSI enters the initialization status.

© Initialization status

- 1. Static display control
- SD0, SD1 = 0: Display OFF
- 2. Display ON/OFF control

С	=	0	: Cursor OFF
В	=	0	: Blink OFF

DC = 0	: Double cursor OFF
--------	---------------------

- D = 0 : Display OFF
- 3. Power save
 - O = 0 : Oscillating circuit OFFPS = 0 : Power save OFF
- 4. Power control
- VC = 0 : Voltage regulating circuit OFF VF = 0 : Voltage follower OFFP = 0 : Boosting circuit OFF
- 5. System set CG = 0 : Not use of CG RAM

As described in 6.1 MPU Interface, the RES pin is connected to the MPU reset pin and performs initialization concurrently with the MPU.

Regarding the reset signal, a pulse of at least 10 μ s or more active level must be input as described in 9. DC Characteristics. Usually, the operation status is started in 1 μ s from the edge of the RES signal.

In the SED1230 Series where the built-in liquid crystal power circuit is not used, the RES input must be active when the external liquid crystal power supply is turned on.

After the RES pin goes active, each register is cleared and set to the above set status.

Unless initialization is performed by the RES pin when a power supply voltage is applied, the clear disable status may be provided.

COMMANDS

Table 4 shows a command list. In the SED1230 Series, each data bus signal is identified by a combination of A0 and \overline{WR} (E).

Command interpretation and execution are performed by only internal timing. This permits high-speed processing.

•	Outline	of	Commands
---	---------	----	----------

Command type	Command name	A0	WR
Display control	Cursor Home	0	0
instruction	Static Display Control	0	0
	Display ON/OFF Control	0	0
Power control	Power Save	0	0
	Power Control	0	0
	Electronic Volume	0	0
	Register Set		
Address control	Address Set	0	0
instruction			
Data input	Data Write	1	0
instruction			

The execution time of each instruction is determined by the internal processing time of the SED1230 Series. Accordingly, to execute instructions in succession, reserve a time exceeding the cycle time (tcyc) and execute the next instruction.

• Outline of Commands

(1) Cursor Home

This command presets the address counter to 30H. When the cursor is displayed, this command moves it to column 1 of line 1.

0 0 0 0 0 1 * * * *		WR								
	0	0	0	0	0	1	*	*	*	*

* : Don't Care

(2) Static Display Control

This command selects display or non-display of static display symbol, and blink ON or OFF. This command is effective in the standby mode only.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	*	*	SD1	SD0
							*	: Dor	n't Ca

SD1, SD2 = 0, 0 : Display OFF 0, 1 : Blink (1 ~ 2 Hz) SD1, SD2 = 1, 0 : Blink (3 ~ 4 Hz)

1, 1 : All Display ON

- (3) Display ON/OFF Control This command performs display and cursor setting.
- Note: Control the symbols that are driven by COMS1 and SEGS1, by the Static Display Control command

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	С	В	DC	D

D	= 0 1	: Display OFF : Display ON
DC	= 0 1	: Double cursor OFF : Double cursor ON
В	= 0 1	: Cursor blink OFF : Cursor blink ON

In the blink state, display characters in normal video and display characters in monochrome reverse video are displayed alternately. The repetition cycle of alternate display is about 1 second.

The relationship between C and B registers and cursor display is shown in the following table.

С	В	Cursor display
0	0	Non-display
0	1	Non-display
1	0	Display in monochrome reverse video
1	1	Alternate display of display charac ters in normal video and display characters in monochrome reverse video

The cursor display position corresponds to the position indicated by address counter.

Accordingly, to move the cursor, change the address counter value by the RAM Address Set command or auto increment by writing RAM data.

If the address counter is set at the symbol register position with (C, B) = (1, 0), symbols can be caused to blink selectively.

C = 0 : Non-display of cursor 1 : Display of cursor

(4) Power Save

0

This command is used to control the oscillating circuit and set and reset the standby mode or sleep mode.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	*	*	0	PS

* : Don't Care

PS	= 0	: Power save OFF (reset)
	1	: Power save ON (set)

- = 0 : Oscillating circuit OFF (stop of oscillation)
 - 1 : Oscillating circuit ON (oscilla tion)
- (5) Power Control This command is used to control the operation of the built-in power circuit.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	VC	VF	Р

Р	= 0	: Boosting circuit OFF
	1	: Boosting circuit ON

- Note: To operate the boosting circuit of the SED1230 Series, the oscillating circuit must be in operation.
- VF = 0 : Voltage follower OFF 1 : Voltage follower ON

VC	= 0	: Voltage regulating circuit OFF
	1	: Voltage regulating circuit ON

(6) System Set

This command set the use or non-use of display lines and CG RAM.

Execute this command first after turning on the power supply or after resetting.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0				
0	0	0	1	0	0	N2	N1	*	PS				
* : Don't Care													
CG		= 0 : Non-use of CG RAM											
		1 : Use of CG RAM											
N2		N1											
0		0) :	2 lin	nes								
0		1	:	3 lir	nes								
1		C) :	4 lir	nes								

(7) Electronic Volume Register Set

This command controls the liquid crystal driving voltage V5 output from the voltage regulating circuit of the built-in liquid crystal power supply, thereby adjusting the gradation of liquid crystal display.

When data is set in the 4-bit register, the liquid crystal driving voltage can take one of 16 voltage states.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	1	1	1	MSB	*	*	LSB	
Hex Code										
70H ~7FH										

MSB			LSB	V5	IREF	
0	0	0	0	Small	0.0 µA	
			:	:	:	
			:	:		
1	1	1	1	Large	About	3.65 µA

When the electronic volume function is not used, set (A3, A2, A1, A0) = (0, 0, 0, 0).

(8) RAM Address Set

This command sets addresses to write data into the DD RAM, CG RAM and symbol register in the address counter.

When the cursor is displayed, the cursor is displayed at the display position corresponding to the DDRAM address set by this command.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1		A	ADD	RES	S		

- The settable address length is ADDRESS = 00H to 7FH.
- ② Before writing data into the RAM, set the data write address by this command. Next, when data is written in succession, the address is automatically incremented.

RAM Map (SED1230, SED1231, SED1232)

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0 0 H		С	GR	ΑΜ	(00	H)		—		С	GR	ΑΜ	(01	H)		—
10H		С	GR	ΑΜ	(02	H)		_		С	GR	ΑΜ	(03	H)		_
20H							ι	Jnuse	d							
3 0 H			DD	DRAM	line 1								1	l	Jnuse	d
40H			DD	DRAM	line 2			Fo	r signa	als —					"	
50H			DD	DRAM	line 3										"	
60H			DD	DRAM	line 4										"	
7 0 H [Sy	mbol ı	registe	ər									"	

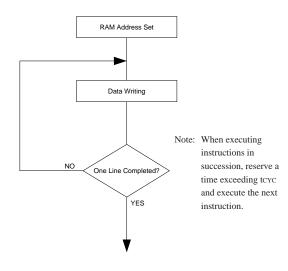
: Unused

For signals : Output from SEGS2 to SEGS6.

RAM Map (SED1233)

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0 0 H		С	GR	ΑM	(00	H)		-		С	GR	ΑΜ	(01	H)		_
10H		С	GR	ΑM	(02	H)		_		С	GR	ΑΜ	(03	H)		_
2 0 H							ι	Jnuse	d							
3 0 H							DE	DRAM	line 1							
4 0 H							DE	DRAM	line 2							
50H							DE	DRAM	line 3							
60H							DE	DRAM	line 4							
7 0 H							Sy	mbol ı	egiste	r						

-: Unused


(9) Data Write

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0				DA	TA			

- ① This command writes data into the DD RAM, CG RAM or symbol register.
- ② After this command is executed, the address counter is automatically incremented by 1. This permits writing data in succession.

<Example of Data Writing>

The following is an example of writing one-line data into the DD RAM in succession.

					Co	de					
Command	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Cursor Home	0	0	0	0	0	1	*	*	*	*	Moves the cursor to the home position.
(2) Static Display Control	0	0	0	0	1	0	*	*	SD S	1 D0	Sets the display mode of static display symbol SD1, SD0 = 0, 0 (display OFF), 0, 1 (1 - 2 Hz blink), 1, 0 (3 4 Hz blink), 1, 1 (all display ON)
(3) Display ON/OFF Control	0	0	0	0	1	1	С	В	DC	D	Sets cursor ON/OFF (C), cursor blink ON//OFF (B), double cursor ON/OFF (DC) and display ON/OFF (D). C = 1 (cursor ON) 0 (cursor OFF), B = 1 (blink ON) 0 (blink OFF) DC = 1 (double cursor ON) 0 (double cursor OFF), D = 1 (display ON) D = 0 (display OFF)
(4) Power Save	0	0	0	1	0	0	*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (0). PS = 1 (power save ON) 0 (power save OFF), 0 = 1 (oscillating circuit ON) 0 (oscillating circuit OFF)
(5) Power Control	0	0	0	1	0	1	0	VC	VF	Р	Sets voltage regulating circuit ON/OFF and boosting circuit ON/OFF (P). VC = 1 (voltage regulating circuit ON) 0 (voltage regulating circuit OFF) VF = 1 (voltage follower ON) 0 (voltage follower OFF), P = 1 (boosting circuit ON) 0 (boosting circuit OFF)
(6) System Set	0	0	0	1	1	0	N2	N1	*	CG	Sets the use or non-use of CG RAM and display lines (N2, N1). CG = 1 (use of CG RAM) 0 (non-use of CG RAM), N2, N1 = 0, 0 (2 lines) 0, 1 (3 lines) 1, 0 (4 lines)
(7) Electronic Volume Register	0	0	0	1	1	1	MS	SB	L	SB	Sets the electronic volume register value.
(8) RAM Address Set	0	0	1			AD	DR	ESS			Sets the DD RAM, CG RAM or symbol register address.
(9) RAM Write	1	0				DA	TA				Writes data into the DD RAM, CG RAM or symbol register address.
(10) NOP	0	0	0	0	0	0	0	0	0	0	Non-operation command
(11) Test Mode	0	0	0	0	0	0	1	0	1	0	Command for IC chip test. Don't use this command.

Table 4 SED1230 Series Command List

CHARACTER GENERATOR

Character Generator ROM (CG ROM)

The SED1230 Series is provided with a character generator ROM consisting of a up to 256-type characters. Each character size is 5×7 dots.

Table 5 shows a character code table of the SED1230 Series.

The 4 characters of character codes 00H to 03H are set by the System Set command to specify for which of CG ROM and CG RAM they are to be used. The CG ROM of the SED1230 Series is a mask ROM and compatible with the user-dedicated CG ROM. Please ask us for further information of it.

Regarding changed CG ROM, it is defined in product name as follows:

(Example) S E D 1 2 3 0 D <u>0</u> B

Digit for CG ROM pattern change

SED123* DA*

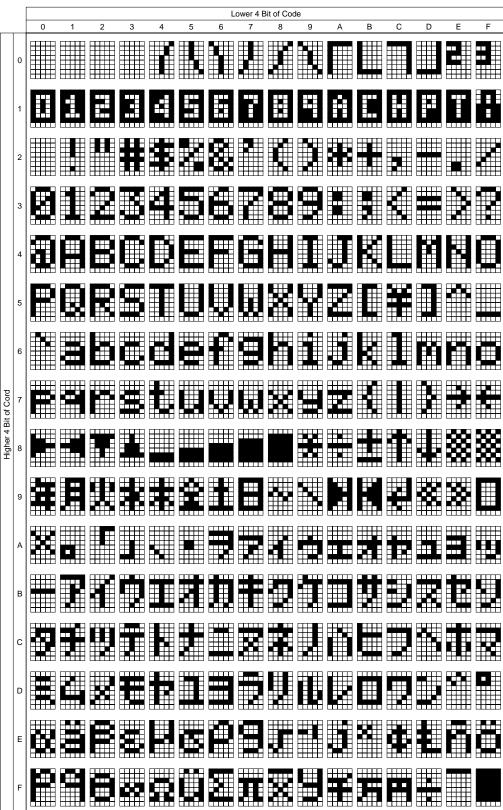


Table 5

SED123* DB*

	[0	1	2	3	4	5	6	ower 4 E 7	it of Cod	le 9	A	В	С	D	E	F
	0				-		HTTT			-							
	1																
	2																
	3	_															
	4																
	5																
	6																
Higher 4 Bit of Cord	7																
Higher	8						_										
	9																
	A																
	в																
	с																
	D																
	E																
	F																

SED123* DG*

Character Generator RAM (CG RAM)

The SED1230 Series is provided with a CG RAM that permits user-programming character patterns so that they can be displayed with a high degree of freedom for signal display.

Before using the CG RAM, select the use of CG RAM by the System Set command.

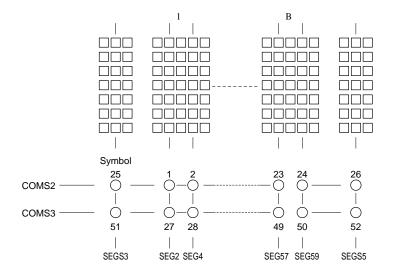
The capacity of the CG RAM is 140 bits and arbitrary patterns of 4 types consisting of 5×7 dots can be registered.

The relationship among CG RAM patterns, CG RAM addresses, and character codes is shown below.

Character code	RAM address		CG	RAN	l dat	a (cł	nara	cter	patte	ern)	Display
Character code	INAM address		D7							D0	
00H	00H~06H	0	*	*	*	0	1	1	1	1	
02H	10H~16H	1	*	*	*	1	0	0	0	0	
		2	*	*	*	1	0	0	0	0	
		3	*	*	*	0	1	1	1	1	
		4	*	*	*	0	0	0	0	1	
		5	*	*	*	0	0	0	0	1	
		6	*	*	*	1	1	1	1	0	
01H	08H~0EH	8	*	*	*	0	0	1	0	0	
03H	18H~1EH	9	*	*	*	0	0	1	0	0	
		Α	*	*	*	0	1	1	1	0	
		В	*	*	*	0	1	1	1	0	
		С	*	*	*	0	1	1	1	0	
		D	*	*	*	1	1	1	1	1	
		Е	*	*	*	1	1	1	1	1	
			U	nuse	ed	CI	nara	cter	data		
							4.		nlov		

1: Display

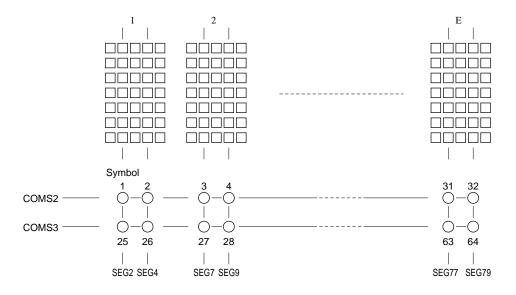
0: Non-display


Symbol Register

The SED1230 Series is provided with a symbol register that permits displaying each symbol so that symbol display may be performed on the screen.

The capacity of the symbol register is 64 bits. In case of 12 digits, 48 symbols can be displayed. In case of 16 digits, 64 symbols can be displayed.

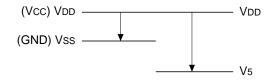
The relationship among symbol register display patterns, RAM addresses and write data is shown below.


(1) SED1230, SED1231, SED1232

				S	ymbo	ol Bit	s			
RAM address		D7							D0	
	0	*	*	*	27	1	28	2	*	
70H~7CH	1	*	*	*	29	3	30	4	*	Bi
	:					:				1:
	В	*	*	*	49	23	50	24	*	0:
	С	*	*	*	51	25	52	26	*]

it : Display : Not display

(2) SED1233


				S	ymbo	ol Bit	S			
RAM address		D7	D6	D5	D4	D3	D2	D1	D0	Bit
	0	*	*	*	33	1	34	2	*	1: Display
70H~7FH	1	*	*	*	35	3	36	4	*	0: Not display
	:					:				
	Е	*	*	*	61	29	62	30	*	
	F	*	*	*	63	31	64	32	*]

Notes	1:	If the symbol segment size is 1.5 times or more
		greater than the other dots, it is recommended to be
		divided into COMS2 and COMS3 and driven
		separately.

2: The segments other than symbol display must not be crossed through COMS2 or COMS3. The COMS3 symbol register must be set to all zeros if crossing.

ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit
Power supply voltage	(1)	Vss	-6.0~+0.3	V
Power supply voltage	(2)	V5	-12.0~+0.3	V
Power supply voltage	(3)	V1, V2, V3, V4	V5~+0.3	V
Input voltage		Vin	Vss-0.3~+0.3	V
Output voltage		Vo	Vss-0.3~+0.3	V
Operating temperature	e	Topr	-30~+85	°C
Storage temperature	TCP	Tstr	-55~+100	°C
	Bare chip	• Str	-65~+125	

- Notes: 1. All the voltage values are based on VDD = 0 V.
 - 2. For voltages of V1, V2, V3 and V4, keep the condition of $VDD \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$ and $VDD \ge VSS \ge V5 \ge VOUT$ at all times.
 - 3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction. In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the reliability of the LSI.

DC CHARACTERISTICS

VDD = 0 V, Vss = -3.6 V to -2.4 V, Ta = -30 to $85^{\circ}C$ unless otherwise specified.

		Item	Symbol		Condition	min	typ	max	Unit	Applicable pin
Powe	er	Recommended				-3.6	-3.0	-2.4	V	Vss
supp	ly	operation	Vss							
volta	ge (1)	Operable				-5.5	-3.0	-2.4		*1
Powe	er	Recommended				-8.0		-5.0	V	V5
suppl	ly	operation	V5							
volta	ge (2)	Operable				-11.0		-4.5		*2
		Operable	V1, V2			0.6×V5		Vdd	V	V1, V2
		Operable	V3, V4			Vdd		0.4×V5	V	V3, V4
High-	level ir	nput voltage	VIHC			0.2×Vss		Vdd	V	*3
Low-	level in	put voltage	VILC			Vss		0.8×Vss	V	*3
Input	leakag	ge current	ILI	VIN = VDD or VS			1.0	μA	*3	
LC di	river Ol	N resistance	Ron	Ta=25°C ΔV=0.1V	V5=-7.0V		20	40	KΩ	COM,SEG *4
Statio	c currer	nt consumption	Idda				0.1	5.0	μA	Vdd
Dyna	mic cu	rrent	Idd	Display state	V5 = -7 V without load			100	μA	Vdd *5
consi	umptio	n		Standby state	Oscillation ON, Power OFF			20	μA	Vdd *6
				Sleep state	Oscillation OFF, Power OFF			5	μA	Vdd
				Access state	fcyc=200KHz			500	μA	Vdd *7
Fram	ie frequ	Jency	ffr	Ta=25°C	Vss=-3.0V	70	100	130	Hz	*11
Input	pin ca	pacity	Cin	Ta=25°C	f=1MHz		5.0	8.0	pF	*3
Rese	t time		tR			1.0			μs	*8
Rese	t pulse	width	trw			10			μs	*9
Rese	t start l	time	tres			50			ns	*9
	Input	voltage	Vss			-3.6		-2.4	V	*10
		er output voltage	Vout	Double boosting	g state	-7.2			V	Vout
~				Triple boosting	·	-10.8				
r suppl		ge follower ting voltage	V 5			-11.0		-4.5	V	
Built-in power supply		ence voltage	Vreg	Ta = 25°C		-3.5	-3.1	-2.7	V	*12
Built-i	<u>`</u>	ence voltage	Vreg(vs1)	Ta = 25°C		-2.4	-2.1	-1.8	V	*12
		ence voltage	Vreg(vss)	Ta = 25°C		Vss	Vss	Vss	V	*12

SED1230 Series

- *1: A wide operating voltage range is guaranteed but an abrupt voltage variation in the access status of the MPU is not guaranteed.
- *2: The operating voltage range is applicable to the case where an external power supply is used.
- *3: D0 ~ D5, D6 (SCL), D7 (SI), A0, RES, CS WR (E), P/S, IF
- *4: This is a resistance value when a voltage of 0.1 V is applied between output pin SEGn, SEGSn, COMn or COMSn, and each power pin (V1, V2, V3 or V4). It is specified in the range of operating voltage (2).

 $Ron = 0.1 V / \Delta I$

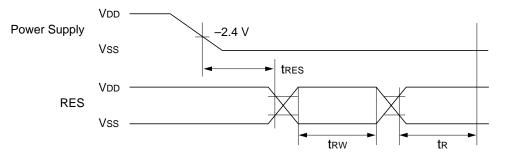
(Δ I: Current flowing when 0.1 V is applied between the power and output)

*5: Character "

" display. This is applicable to the

case where no access is made from the MPU and the built-in power circuit and oscillating circuit are in operation.

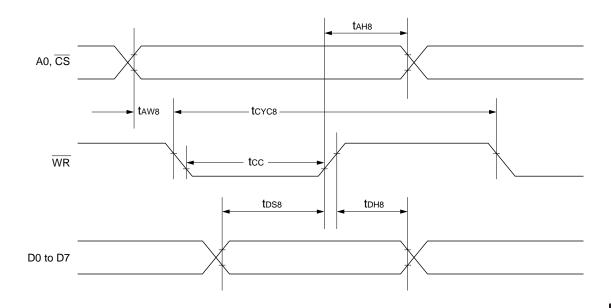
- *6: This is applicable to the case where the built-in power circuit is OFF and the oscillating circuit is in operation in the standby mode.
- *7: Current consumption when data is always written by fcyc.


The current consumption in the access state is almost proportional to the access frequency (f_{cyc}). When no access is made, only IDD (I) occurs.

- *8: tR (reset time) indicates the internal circuit reset completion time from the edge of the RES signal. Accordingly, the SED123* usually enters the operating state after tR.
- *9: Specifies the minimum pulse width of the RES signal. It is reset when a signal having the pulse width greater than tRW is entered.
- *10:When operating the boosting circuit, the power supply Vss must be used within the input voltage range.

*11: The fosc frequency of the oscillator circuit for internal circuit drive may differ from the fBST boosting clock on some models. The following provides the relationship between the fosc frequency, fBST boosting clock, and fFR frame frequency.

 $\begin{array}{l} \text{fosc} = (\text{No. of digits}) \times (1/\text{Duty}) \times \text{fR} \\ \text{fBST} = (1/2) \times (1/\text{No. of digits}) \times \text{fosc} \\ \text{Example: The SED1230 has 13 digits of display} \\ \text{and } 1/30 \text{ duty.} \\ \text{fosc} = 13 \times 30 \times 100 = 39 \text{ kHz} \\ \text{fBST} = (1/2) \times (1/13) \times 39 \text{ K} = 1.5 \text{ kHz} \end{array}$

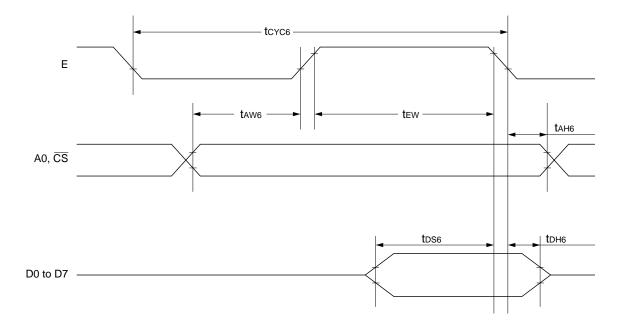

*12: The VREG reference voltage has the temperature characteristics of approximately -0.17%/°C (standard specifications). An optional model having the temperature characteristics of approximately -0.04%/°C is also available. The voltage of power supply terminal VSS can be selected as the reference power supply as an option without using the reference voltage inside the IC. In this case, however, a regulator is used for the external power supply (VDD – VSS). The voltage accuracy of V5 depends on that of the regulator used. The CGROM modification rules apply to the optional models.

All signal timings are based on 20% and 80% of Vss signals.

TIMING CHARACTERISTICS

(1) System Bus Write Characteristic I (80 series MPU)

[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]


Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	t AH8		30		ns
Address setup time		t AW8		60		ns
System cycle time	WR	t CYC8	Vss = -3.0	500		ns
			-2.7	550		
			-2.4	650		
Control pulse width (WR)		t cc	Vss = -3.0	100		ns
			-2.7	120		
			-2.4	150		
Data setup time	D0 ~ D7	t DS8		100		ns
Data hold time		t DH8		50		ns

*1: For the rise and fall of an input signal, set a value not exceeding 25 ns.

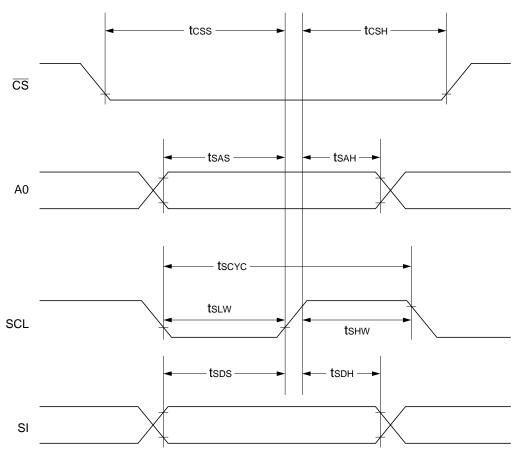
*2: Every timing is specified on the basis of 20% and 80% of Vss.

*3: For A0 and \overline{CS} , the same time is not required. Input signals so that A0 and \overline{CS} may satisfy tAW8 and tAH8 respectively.

(2) System Bus Write Characteristic II (68 series MPU)

[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, <u>CS</u>	t CYC6	Vss = -3.0	500		ns
			-2.7	550		
			-2.4	650		
Address setup time		t AW6		60		
Address hold time		t AH6		30		ns
Data setup time	D0 ~ D7	t DS6		100		ns
Data hold time		t DH6		50		ns
Enable pulse width	E	t EW	Vss = -3.0	100		ns
			-2.7	120		
			-2.4	150		


*1: tCYC6 denotes the cycle of the E signal in the \overline{CS} active state. tCYC6 must be reserved after \overline{CS} becomes active.

*2: For the rise and fall of an input signal, set a value not exceeding 25 ns.

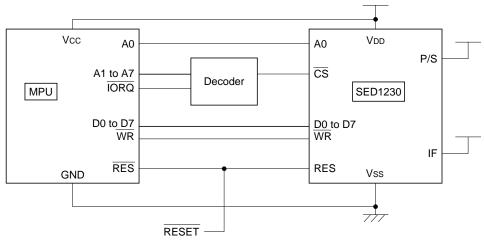
*3: Every timing is specified on the basis of 20% and 80% of Vss.

*4: For A0 and \overline{CS} , the same timing is not required. Input signals so that A0 and \overline{CS} may satisfy tAW6 and tAH6 respectively.

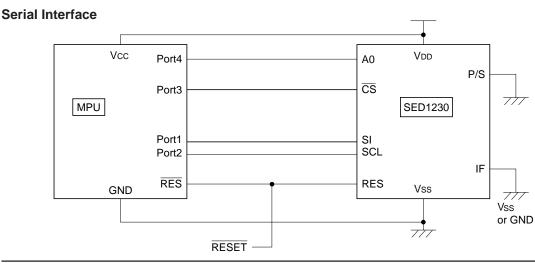
(3) Serial Interface

 $[Vss = -3.6 V \text{ to } -2.4 V, Ta = -30 \text{ to } 85^{\circ}C]$

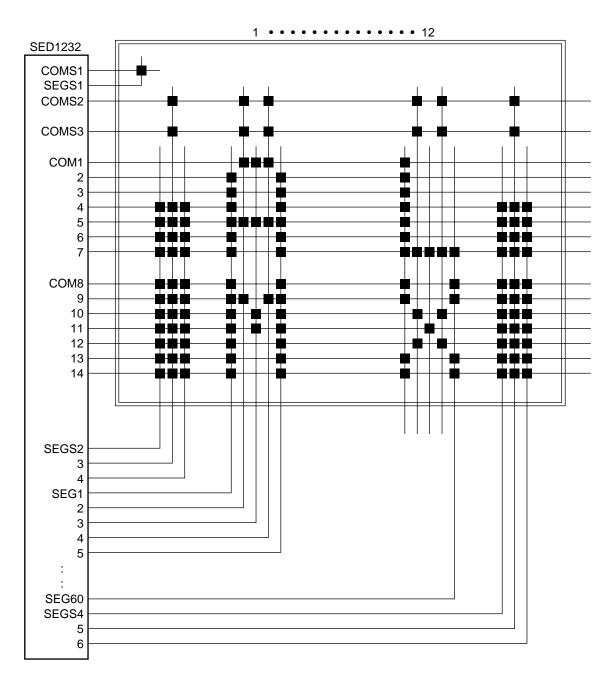
ltem	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tscyc	Vss = -3.0	700		ns
			-2.7	800		ns
			-2.4	1000		ns
SCL "H" pulse width		tshw		300		ns
SCL "L" pulse width		tSLW		300		ns
Address setup time	A0	tSAS		50		ns
Address hold time		tSAH	Vss = -3.0	350		ns
			-2.7	400		ns
			-2.4	500		ns
Data setup time	SI	tsds		50		ns
Data hold time		tSDH		50		ns
CS-SCL time	CS	tcss		150		ns
		tCSH	Vss = -3.0	550		ns
			-2.7	650		ns
			-2.4	700		ns


*1: For the rise and fall of an input signal, set a value not exceeding 25 ns.

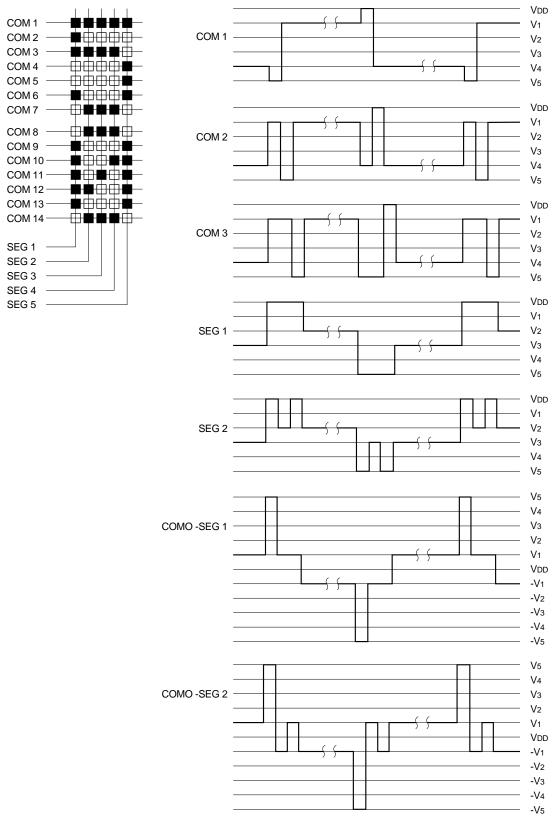
*2: Every timing is specified on the basis of 20% and 80% of Vss.


MPU INTERFACE (REFERENCE EXAMPLES)

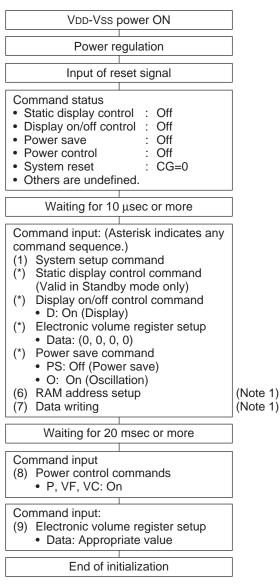
The SED1230 Series can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the SED1230 Series can be operated by less signal lines.


80 Series MPU

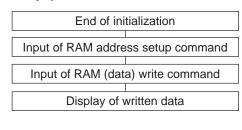
68 Series MPU Vcc Vdd A0 A0 P/S CS A1 to A7 Decoder VMA MPU SED1230 D0 to D7 D0 to D7 Е Е IF RES RES Vss GND 7/7 RESET -


INTERFACE TO LCD CELLS (REFERENCE) 12 columns by 2 lines, 5 × 7-dot matrix segments and symbols

System Setup


N2	N1
0	0

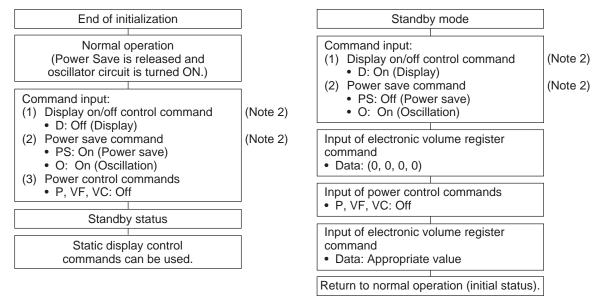
LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS)



Instruction Setup Example (Reference Only)

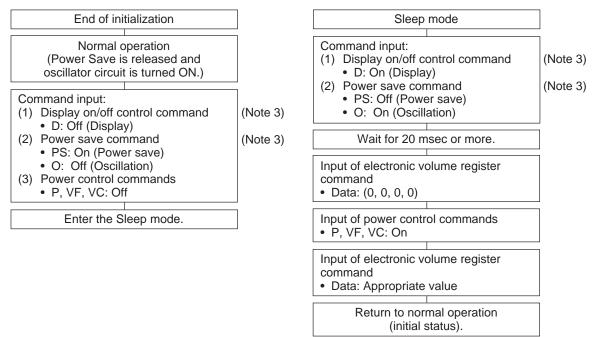
(1) Initial setup

(2) Display mode


SED1230 Series

Note 1: Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area must satisfy the following conditions (for RAM clear).

- DDRAM: Write the 20H data (character code).
- CGRAM: Write the 00H data (null data).
- Symbol register: Write the 00H data (null data).


As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not, unexpected display may result.

(3-1) Selecting the Standby mode

Note 2: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

(4-1) Selecting the Sleep mode

Note 3: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

EPSON

(4-2) Releasing the Sleep mode

(3-2) Releasing the Standby mode

SED1234/35 Series LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW	7–1
FEATURES	7–1
BLOCK DIAGRAM	7–2
SED1234/35 SERIES, CHIP SPECIFICATION	
DESCRIPTION OF PINS	
FUNCTIONAL DESCRIPTION	7–11
COMMANDS	7–17
CHARACTER GENERATOR	7–21
ABSOLUTE MAXIMUM RATINGS	7–27
DC CHARACTERISTICS	
TIMING CHARACTERISTICS	
MPU INTERFACE (REFERENCE EXAMPLES)	
INTERFACE TO LCD CELLS (REFERENCE)	
LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS)	

OVERVIEW

The SED1234, 1235 Series is a dot matrix LCD controller driver for character display, and can display a maximum of 48 characters, 4 user-defined characters, and a maximum of 48 symbols by means of 4-bit, 8-bit or serial data sent from a microcomputer.

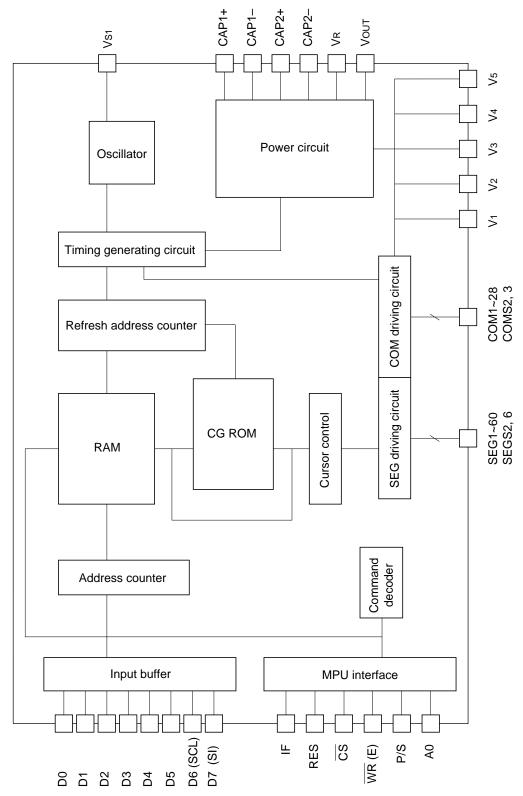
A built-in character generator ROM is prepared for 256 character types, and each character font consists of 5×7 dots. A user-defined character RAM for four characters of 5×7 dots are incorporated, and a symbol register is also incorporated. With these, it is possible to apply this Series to display with a high degree of freedom. This Series can operate handy units with a minimum power consumption by means of its low power consumption and sleep mode.

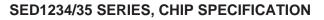
SED1234, and 1235 depending on the duty of use and the number of display columns.

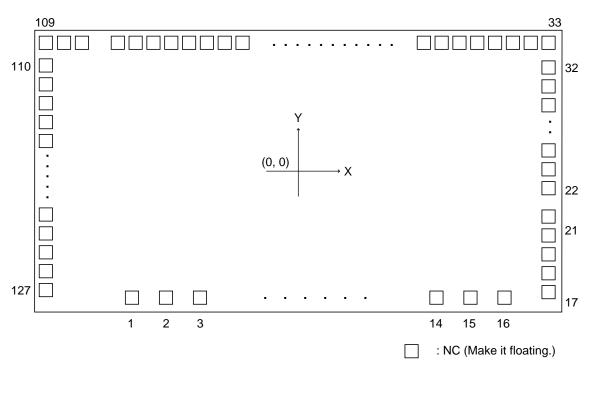
FEATURES

- Built-in diplay RAM 48 characters + 4 user-defined characters + 48 symbols
- CG ROM (for up to 256 characters), CG RAM (4 characters), and symbol register (48 symbols)

• Number of display columns × number of lines (12 columns + 2 segment for signal) × 4 lines + 48 symbols: SED1234


(12 columns + 2 segment for signal) \times 2 lines + 48 symbols: SED1235


- CR oscillation circuit (on-chip C and R)
- High-speed MPU interface Interfacing with both 68 series and 80 series MPU Interfacing in 4 bits/8 bits
- Serial interface


•

- Character font 5×7 dots
- Duty ratio 1/16 (SED1235)
- 1/30 (SED1234)
- Simple command setting
- Built-in liquid crystal driving power circuit Power boosting circuit, power regulating circuit, voltage follower × 4
- Built-in electronic volume function
- Low power consumption 100 µA Max. (In normal operation mode: Including the operating current of the built-in power supply)
- Power supply VDD - VSS (logic section): -2.4 V to -3.6 V VDD - V5 (liquid crystal drive section) : -5.0 V to -8.0 V
- Wide operating temperature range Ta = -30 to $85^{\circ}C$
- CMOS process
 - (Pad Pitch)
 - COB assemble 126 µm min.
- Delivery form: Chip SED123*D*A, SED123*D*C
- This IC is not designed with a protection against radioactive rays.

BLOCK DIAGRAM

SED1234D**	1/30 duty
SED1235D _{**}	1/16 duty
\uparrow	, i i i i i i i i i i i i i i i i i i i
#1 Co	olumn for CG ROM pattern change

Chip size:	$10.23 \times 3.11 \text{ mm}$
Pad pitch:	126 µm (Min.)
Chip thickness:	625 ± 25 μm (SED123 * D*A)
-	525 ± 25 µm (SED123*D*C)

1) A1 pad specification

Pad size: A 91 μm × 90 μm B 114 μm × 114 μm

<SED1234D**> (1/2)

Unit: µm

P	AD	COOR	DINATES	Р	AD	COOR	DINATES
No.	Name	Х	Y	No.	Name	Х	Y
1	Vdd	-4077	-1371	55	SEG15	2106	1406
2	Vss	-3526		56	SEG16	1979	
3	V5	-2975		57	SEG17	1852	
4 5	V4 V3	-2424 -1855		58 59	SEG18 SEG19	1725 1598	
6	V3 V2	-1287		60	SEG19 SEG20	1471	
7	V1	-719		61	SEG21	1345	
8	Vo	-151		62	SEG22	1218	
9	VR	400		63	SEG23	1091	
10	Vout	968		64	SEG24	964	
11	CAP2-	1519		65	SEG25	837	
12	CAP2+	2070		66	SEG26	710	
13	CAP1-	2638		67 68	SEG27 SEG28	584 457	
14 15	CAP1+ Vss	3189 3757		69	SEG20 SEG29	330	
16	VSS	4308		70	SEG30	203	
17	(NC)	4883		71	SEG31	76	
18	(NC)	4883		72	SEG32	-51	
19	(NC)	4883		73	SEG33	-177	
20	(NC)	4883		74	SEG34	-304	
21	VS1	4929		75	SEG35	-431	
22	P/S	4924		76	SEG36	-558	
23 24	IF RES	4924 4924		77 78	SEG37 SEG38	685 812	
24 25	COMS2	4924 4950		78	SEG30 SEG39	-938	
26	COM1	4950		80	SEG40	-1065	
27	COM2	4950		81	SEG41	-1192	
28	COM3	4950		82	SEG42	-1319	
29	COM4	4950		83	SEG43	-1446	
30	COM5	4950		84	SEG44	-1572	
31	COM6	4950		85	SEG45	-1699	
32 33	COM7 COM8	4950 4896		86 87	SEG46 SEG47	-1826 -1953	
33 34	COM8 COM9	4769		88	SEG47 SEG48	-2080	
35	COM10	4642		89	SEG49	-2207	
36	COM11	4515		90	SEG50	-2333	
37	COM12	4388		91	SEG51	-2460	
38	COM13	4262		92	SEG52	-2587	
39	COM14	4135		93	SEG53	-2714	
40 41	SEGS2 SEG1	4008 3881		94 95	SEG54 SEG55	-2841 -2968	
41	SEG2	3754		96	SEG55 SEG56	-3094	
42	SEG3	3627		97	SEG57	-3221	
44	SEG4	3501		98	SEG58	-3348	
45	SEG5	3374		99	SEG59	-3475	
46	SEG6	3247		100	SEG60	-3602	
47	SEG7	3120		101	SEGS6	-3729	
48	SEG8	2993		102	COM28	-3855	
49 50	SEG9	2866		103	COM27 COM26	-3982	
50 51	SEG10 SEG11	2740 2613		104 105	COM26 COM25	-4109 -4236	
52	SEG11 SEG12	2486		105	COM25 COM24	-4230 -4363	↓ ↓
53	SEG13	2359		107	COM23	-4679	1405
54	SEG14	2232	↓	108	COM22	-4806	1405

<SED1234D**> (2/2)

P	AD	COOR	DINATES
No.	Name	Х	Y
109	COM21	-4933	1405
110	COM20	-4964	1094
111	COM19		966
112	COM18		839
113	COM17		712
114	COM16		584
115	COM15		457
116	COMS3		330
117	<u>A0</u>		202
118	WR		75
119	CS		-52
120	D7		-180
121	D6		-307
122	D5		-434
123	D4		-562
124	D3		-689
125	D2		-816
126	D1		-943
127	D0	↓	-1071

<SED1235D**> (1/2)

Unit: µm

Р	AD	COOR	DINATES	F	PAD	COOR	DINATES
No.	Name	Х	Y	No.	Name	Х	Y
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Name VDD Vss V5 V4 V3 V2 V1 V0 VR VOUT CAP2- CAP2+ CAP1-	X -4077 -3526 -2975 -2424 -1855 -1287 -719 -151 400 968 1519 2070 2638	-1371	No. 55 56 57 58 59 60 61 62 63 64 65 66 67	Name SEG15 SEG16 SEG17 SEG18 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27	X 2106 1979 1852 1725 1598 1471 1345 1218 1091 964 837 710 584	-1406
13 14 15 16 17 18 19 20 21 22 23 24 25 26	CAP1+ Vss Vdd (NC) (NC) (NC) (NC) Vs1 P/S IF RES COMS2 COM1	2038 3189 3757 4308 4883 4883 4883 4883 4929 4924 4924 4924 4924 4924 4950 4950	-1343 -1233 -1123 -1013 -903 -184 -57 70 255 382	68 69 70 71 72 73 74 75 76 77 78 79 80	SEG27 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38 SEG39 SEG40	457 330 203 -51 -177 -304 -431 -558 -685 -812 -938 -1065	
27 28 29 30 31 32 33 34 35 36 37 38 39	COM2 COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM11 COM12 COM13 COM14	4950 4950 4950 4950 4950 4950 4896 4769 4642 4515 4388 4262 4135	382 510 637 764 891 1019 1146 1406	81 82 83 84 85 86 87 88 89 90 91 92 93	SEG41 SEG42 SEG43 SEG44 SEG45 SEG46 SEG47 SEG48 SEG49 SEG50 SEG51 SEG52 SEG53	-1192 -1319 -1446 -1572 -1699 -1826 -1953 -2080 -2207 -2333 -2460 -2587 -2714	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	SEGS2 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14	4008 3881 3754 3627 3501 3374 3247 3120 2993 2866 2740 2613 2486 2359 2232		94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	SEG54 SEG55 SEG56 SEG57 SEG58 SEG59 SEG60 SEGS6 (NC) (NC) (NC) (NC) (NC) (NC) (NC) (NC)	-2841 -2968 -3094 -3221 -3348 -3475 -3602 -3729 -3855 -3982 -4109 -4236 -4363 -4679 -4806	1405 1405

<SED1235D**> (2/2)

P	AD	COORDINATES		
No.	Name	Х	Y	
109	COM14	-4933	1405	
110	COM13	-4964	1094	
111	COM12		966	
112	COM11		839	
113	COM10		712	
114	COM9		584	
115	COM8		457	
116	COMS3		330	
117	<u>A0</u>		202	
118	WR		75	
119	CS		-52	
120	D7		-180	
121	D6		-307	
122	D5		-434	
123	D4		-562	
124	D3		-689	
125	D2		-816	
126	D1		-943	
127	D0	♦	-1071	

SED1234/35 Series

DESCRIPTION OF PINS

Power Pins

Pin name	I/O	Description	Q'ty
Vdd	Power supply	Logic + power pin. Also used as MPU power pin Vcc.	2
Vss	Power supply	Logic – power pin. Connected to the system GND.	2
V0, V1	Power supply	Multi-level power supply for liquid crystal drive.	6
V2, V3		The voltage determined in the liquid crystal cell is resistance-	
V4, V5		divided or impedance-converted by operational amplifier, and the	
		resultant voltage is applied.	
		The potential is determined on the basis of VDD and the following	
		equation must be respected.	
		$VDD = V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$, $VDD \ge VSS \ge V5 \ge VOUT$	
		When the built-in power supply is ON, the following voltages are	
		given to pins V1 to V4 by built-in power circuit:	
		$V_1 = 1/5 V_5$	
		$V_2 = 2/5 V_5$	
		$V_3 = 3/5 V_5$	
		$V4 = 4/5 V_5$	
VS1	0	Power supply voltage output pin for oscillating circuit.	1
		Don't connect this pin to an external load.	

LCD Power Circuit Pins

Pin name	I/O	Description	Q'ty		
CAP1+	0	Capacitor positive side connecting pin for boosting.			
		This pin connects the capacitor with pin CAP1			
CAP1-	0	Capacitor negative side connecting pin for boosting.	1		
		This pin connects a capacitor with pin CAP+.			
CAP2+	0	Capacitor positive side connecting pin for boosting.	1		
		This pin connects a capacitor with pin CAP2			
CAP2-	0	Capacitor negative side connecting pin for boosting.	1		
		This pin connects a capacitor with pin CAP2+.			
Vout	0	Output pin for boosting. This pin connects a smoothing capacitor	1		
		with VSS pin.			
Vr	I	Voltage regulating pin. This pin gives a voltage between VDD and	1		
		V5 by resistance-division of voltage.			

Pins for System Bus Connection

Pin name	I/O	Description					
D7 (SI) D6 (SCL) D5 ~ D0	I	8-bit input data bus.These pins are connected to a 8-bit or 16-bit standard MPU data bus.When P/S = "Low", the D7 and D6 pins are operated as a serial data input and a serial clock input respectively.P/SD7D6D5 ~ D0 \overline{CS} A0"Low"SISCL— \overline{CS} A0"High"D7D6D5 ~ D0 \overline{CS} A0	8				
AO	I	Usually, this pin connects the least significant bit of the MPU address bus and identifies a data command. 0 : Indicates that D0 to D7 are a command. 1 : Indicates that D0 to D7 are display data.					
RES	I	In case of a 68 series MPU, initialization can be performed by changing RES []. In case of an 80 series MPU, initialization can be performed by changing []. A reset operation is performed by edge sensing of the RES signal. An interface type for the 68/80 series MPU is selected by input level after initialization. "L" : 80 series MPU interface "H" : 68 series MPU interface					
CS	I	Chip select signal. Usually, this pin inputs the signal obtained by decoding an address bus signal. At the "Low" level, this pin is enabled.					
WR (E)	I	<when 80="" an="" connecting="" mpu="" series=""> Active "Low". This pin connects the WR signal of the 80 series MPU. The signal on the data bus is fetched at the rise of the WR signal. <when 68="" a="" connecting="" mpu="" series=""> Active "High". This pin becomes an enable clock input of the 68 series MPU.</when></when>					
P/S	I	This pin switches between serial data input and parallel data input.P/SChip SelectData/CommandDataSerial Clock"High"CSA0D0~D7-"Low"CSA0SISCL	1				
IF	I	Interface data length select pin for parallel data input. "High": 8-bit parallel input "Low": 4-bit parallel input When P/S = "Low", connect this pin to VDD or Vss.					

Liquid Crystal Drive Circuit Signals

SED1234

Pin name	I/O	Description	Q'ty		
COM1~	0	Common signal output nin (for characters)			
COM28	0	Common signal output pin (for characters)			
COMS2,	DMS2, Common signal output pin (except for characters)		2		
CMOS3	0	CMOS2, CMOS3: Common output for symbol display			
SEG1~	0	Segment signal output pin (for characters)			
SEG60	0				
SEGS2,	0	Segment signal output pin (except for characters)	2		
SEGS6	0	SEGS2, SEGS6: Segment output for signal output			

SED1235

Pin name	I/O	Description	Q'ty
COM1~	0	Common signal output pin (for characters)	14
COM14	0	COM8~COM14:W output	(21)
COMS2,	0	Common signal output pin (except for characters)	2
CMOS3	0	CMOS2, CMOS3: Common output for symbol display	2
SEG2~	0	Segment signal output pin (for characters)	
SEG60	0		
SEGS2,	0	Segment signal output pin (except for characters)	2
SEGS6	0	SEGS2, SEGS6: Segment output for signal output	

FUNCTIONAL DESCRIPTION

MPU Interface

Selection of interface type

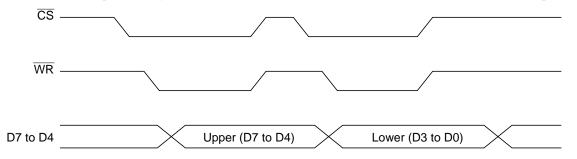
In the SED1234, SED1235, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting "High" or "Low" as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table 1.

Table 1

P/S	Туре	CS	A0	WR	SI	SCL	D0~D7
"High"	Parallel Input	CS	A0	WR	_	_	D0~D7
"Low"	Serial Input	CS	A0	—	SI	SCL	—

Parallel Input

In the SED1234, SED1235, when parallel input is selected (P/S = "High"), it can be directly connected to the 80 series MPU bus or 68 series MPU bus, as shown in Table 2, if either "High" or "Low" is selected as RES pin polarity after a reset input, because the RES pin has an MPU select function.


Selection between 8 bits and 4 bits is performed by command.

RES input polarity	Туре	A0	WR	CS	D0~D7
High-to-low active	68 series	A0	E	CS	D0~D7
Low-to-high active	80 series	A0	WR	CS	D0~D7

Table 2

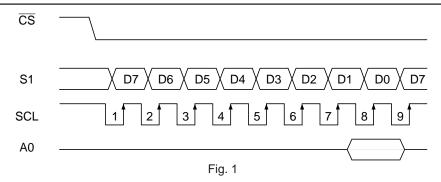
Interface with 4-bit MPU interface

When data transfer is performed by 4-bit interface (IF = 0), an 8-bit command, data and address are divided into two parts.

Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then perform writing.

Serial interface (P/S = "Low")

The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled in the ship selected status (CS = "Low").


When no chip is selected, the shift register and counter are reset to the initial status.

Serial data is input in the order of D7, D6 D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL). At the rising edge of the 8th serial clock, the serial data is converted into 8-bit parallel data and this data is processed. The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when A0 = "High", it is regarded as display data. When A0 = "Low", it is regarded as a command.

The A0 input is read in and identified at the rise of the $8 \times n$ -th clock of Serial Clock (SCL) after chip selection. Fig. 1 shows a timing chart of the serial interface.

Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length. We recommend the user to perform an operation check with a real machine.

We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.

Identification of data bus signals

The SED1234, SED1235 series identifies data bus signals, as shown in Table 3, by combinations of A0 and \overline{WR} (E). Table 3

Common	68 series	80 series	
Common	00 301103		Function
A0	E	WR	i unotori
1	1	0	Writing to RAM and symbol register
0	1	0	Writing to internal register (command)

Chip select

The SED1234, SED1235 series has a chip select pin (\overline{CS}) . Only when $\overline{CS} = \text{`Low''}$, MPU interfacing is enabled. In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is input regardless of the \overline{CS} status.

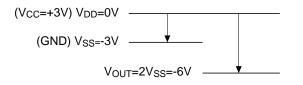
Power Circuit

This is a low-power-consumption power circuit that generates a voltage required for liquid crystal drive. The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.

The power circuit incorporated in the SED1234, SED1235 Series is set for a small-scale liquid crystal panel, so that its display quality may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity. In this case, an external power supply must be used.

A power circuit function can be selected by power control command. With this, an external power supply and a part of the internal power supply can be used together.

	Boosting circuit	Voltage regulat- ing circuit	Voltage follower	External voltage input	Boosting system pin
	0	0	0	_	
Note 1	×	0	0	Vout	OPEN
Note 2	×	×	0	V5 = VOUT	OPEN
Note 3	×	×	×	V1, V2, V3, V4, V5	OPEN


Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open and give a liquid crystal drive voltage to the VOUT pin from the outside.

Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins open, connect between the V5 pin and VOUT pin, and give a liquid crystal drive voltage from the outside.

Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages V1, V2, V3, V4 and V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and VOUT pins open.

Triple boosting circuit

When a capacitor is connected between CAP1+ and CAP1-, between CAP2+ and CAP2-, and between Vss pin and VOUT pin respectively, the potential between the VDD pin and Vss pin is boosted triple and output to the VOUT pin. In case of double boosting, remove the capacitor between CAP2+ and CAP2- in connection for triple boosting operation and strap between CAP2- and

Potential during double boosting

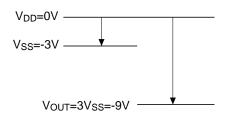
Voltage regulating circuit

The voltage regulation circuit regulates the boosted voltage developed at Vout. It outputs the regulated LCD driving voltage at the V5 terminal. An internal resistor can be inserted into the regulation circuit feedback loop providing the following voltage levels at the V5 terminal.

When V5 is required to be different than the above case, leave the internal feedback resistor out of the circuit. V5 can be regulated within a range of |V5| < |VOUT|. It may be calculated by the following formula:

$$V_5 = (1 + \frac{R_b}{R_a}) \bullet V_{REG} \dots$$

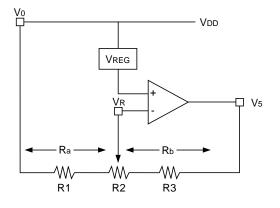
Wherein, VREG is the constant voltage source inside the SED1230 Series and the voltage is constant at VREG = 3.1V. Voltage regulation of the V5 output is accomplished by connecting a variable resistor between VR, VDD and V5. For fine adjustment of the V5 voltage, use a combination of fixed resistors R1 and R3 and a variable resistor R2.


Condition: $I(R1, R2, R3) \le 5\mu A$ $V_5 = -6 \text{ to } -8V$

$$\begin{array}{ll} \mbox{Setting:} & \mbox{R1+R2+R3} = 8V/5\mu A = 1.6M\Omega \\ & \mbox{8V} = (1+Rb/Ra) \ 3.0V \ Rb/Ra = 1.67 \\ & \mbox{6V} = (1+Rb/Ra) \ 3.0V \ Rb/Ra = 1 \end{array} \right\} \ \cdots \ \left\{ \begin{array}{l} \mbox{R1} = 600 K\Omega \\ \mbox{R2} = 200 K\Omega \\ \mbox{R3} = 800 K\Omega \end{array} \right.$$

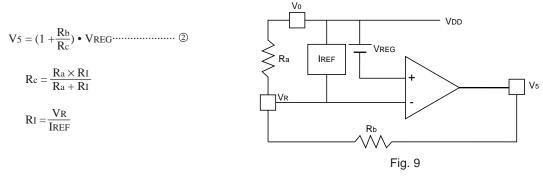
VOUT pin. Then, a double boosted output can be obtained from the VOUT pin (CAP2-).

The boosting circuit uses a signal from the oscillator ourput.


Accordingly, it is necessary that the oscillating circuit must be in operation. The potential relationship of boosting is shown below.

The voltage regulator circuit carries a temperature gradient of about -0.17%/°C under VREG outputs. When any other temperature gradient is required, connect a thermistor in series to the output voltage regulating register.

Since the VR terminal has a high input impedance, it is necessary to take noise suppression measures such as shortening the input wiring and shielding the wiring run.



• Voltage Regulation Circuit Using Electronic Contrast Control Register

The contrast control register controls the liquid crystal driving voltage (V5). This is accomplished by an electronic volume control register set command that adjusts the contrast of the liquid crystal display (see section 1-22).

The commands provide 4-bits of voltage level data to the electronic volume control register. This provides for the selection of 16 different voltage levels for the liquid crystal driving voltage. When using the electronic volume control function, it is necessary to close the voltage regulation circuit using electronic control commands. For reference information, when the electronic volume control registor value is at (1, 1, 1, 1), the constant current value becomes: IREF= 3.65μ A.

[An exemplary constant setting when the electronic volume control function is being used]

- Determining the V5 voltage setting range by the electronic volume control Liquid crystal driving voltage V5: max. -6v ~ min. -8V V5 variable voltage range: 2V
- (2) Determinig the Rb
 - $R_b = V_5 \text{ variable voltage range/ IREF}$ $= 2V/3.65 \mu A$ $= 548 K \Omega$
- (3) Determining the Ra

 $R_{a} = \frac{V_{REG}}{(V_{5} \text{ voltage setting max - } V_{REG}) / R_{b}} (Use absolute values for V_{REG} and V_{5} \text{ voltage settings.})$

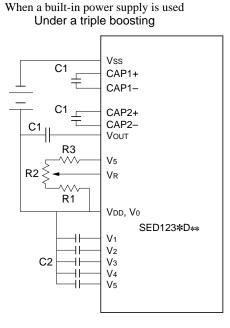
$$=\frac{3.1\mathrm{V}}{(6\mathrm{V}-3.1\mathrm{V})/548\mathrm{K}\Omega}$$

 $= 585 \mathrm{K}\Omega$

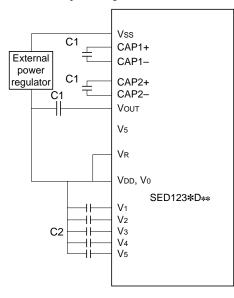
(4) Regulating the Ra

Set the electronic volume control register to (D3, D2, D1, D0) = (1, 0, 0, 0) or (0, 1, 1, 1) before matching the Ra value to the optimum contrast.

Since IREF is a simplified constant voltage source, fluctuations upto $\pm 40\%$ must be taken into consideration, as a dispersion range during manufacture. Meanwhile, the temperature dependency of IREF is : Δ IREF = -0.037 μ A/°C. Determine the R_a and R_b for the using LCD panel in consideration of the above dispersion and the variation by the temperature.

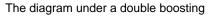

When using the electronic volume control function, in order to compensate the V5 voltage for dispersion of VREG and IREF, use a variable registor as Ra and perform optimum contrast adjustment according to the above item (4) with each IC chip.

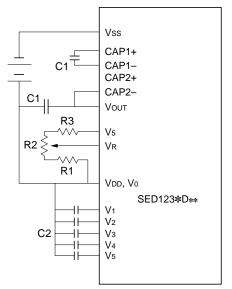
When the electronic volume control function is not being used, set the electronic volume control register to (0, 0, 0) using the RES signal or the electronic volume control register setting command.


Liquid crystal voltage generating circuit

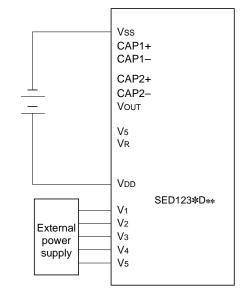
The V5 potential is resistance-divided inside the IC so that V1, V2, V3 and V4 potentials are generated for liquid crystal drive.

Furthermore, the V1, V2, V3 and V4 are impedanceconverted by voltage follower and the then supplied to


When an external power regulator is used (The built-in power regulator is not used)



the liquid crystal drive circuit.


The liquid crystal drive voltage is fixed to 1/5 bias.

As shown in the diagrams below, the capacitor (C2) for voltage stabilization must be externally connected to the V1 to V5 pins of liquid crystal power pins.

When a built-in power supply is not used

Reference setting values: C1:

C1: 0.1 - 4.7 μF C2: 0.1 μF

We recommend the user to set the optimum values to capacitors C1 and C2 according to the panel size watching the liquid crystal display and drive waveforms.

Low Power Consumption Mode

The SED1234, SED1235 Series is provided with the standby mode and sleep mode with the object of low power consumption when the unit is in the standby state.

• Sleep Mode

After the power circuit and oscillating circuit are turned off by command and the power save command is executed, the sleep mode is set. This mode permits reducing current consumption nearly to the static current value.

- 1. Liquid crystal display output COM1 ~ COM28, COMS2, COMS3 : VDD level SEG1 ~ SEG60, SEGS2, SEGS6 : VDD level
- DD RAM, CG RAM and symbol register Written contents do not change and are stored regardless of whether the sleep mode is turned on or off.
- 3. In the operation mode, the status precedent to execution of the sleep mode is held. All the internal circuits stops.
- Power circuit and oscillating circuit Turn off the built-in power supply and oscillating circuit by power save command and power control command.

Reset Circuit

When the RES input goes active, this LSI enters the initialization status.

1. D	isplay C	N/OI	FF c	control
	С	=	0	: Cursor OFF
	В	=	0	: Blink OFF
	DC	=	0	: Double cursor OFF
	D	=	0	: Display OFF
2. P	ower sav	/e		
	0	=	0	: Oscillating circuit OFF
	PS	=	0	: Power save OFF
3. P	ower co	ntrol		
	VC	=	0	: Voltage regulating circuit OFF
	VF	=	0	: Voltage follower OFF
	Р	=	0	: Boosting circuit OFF
4. S	ystem se	et		
	CG	=	0	: No use of CG RAM

As described in 6.1 MPU Interface, the RES pin is connected to the MPU reset pin and performs initialization concurrently with the MPU.

Regarding the reset signal, a pulse of at least 10 μ s or more active level must be input as described in 9. DC Characteristics. Usually, the operation status is started in 1 μ s from the edge of the RES signal.

In the SED 1230 Series where the built-in liquid crystal power circuit is not used, the RES input must be active when the external liquid crystal power supply is turned on.

COMMANDS

Table 4 shows a command list. In the SED1230 Series, each data bus signal is identified by a combination of A0 and \overline{WR} (E).

Command interpretation and execution are performed by only internal timing. This permits high-speed processing.

•	Outline	of	Commands
---	---------	----	----------

Command type	Command name	A0	WR
Display control	Cursor Home	0	0
instruction	Display ON/OFF Control	0	0
Power control	Power Save	0	0
	Power Control	0	0
	Electronic Volume	0	0
	Register Set		
Address control	Address Set	0	0
instruction			
Data input	Data Write	1	0
instruction			

The execution time of each instruction is determined by the internal processing time of the SED1230 Series. Accordingly, to execute instructions in succession, reserve a time exceeding the cycle time (tcyc) and execute the next instruction.

• Outline of Commands

(1) Cursor Home

This command presets the address counter to 30H. When the cursor is displayed, this command moves it to column 1 of line 1.

A) WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	*	*	*	*
_							*	: Dor	n't Ca

- Display ON/OFF Control (2)This command performs display and cursor setting.
- Note: Control the symbols that are driven by COMS1 and SEGS1, by the Static Display Control command.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	С	В	DC	D
D		= 0 1			olay (olay (
DC		= 0 1	-		ble c ble c			F	

В = 0: Cursor blink OFF

С

: Cursor blink ON 1

In the blink state, display characters in normal video and display characters in monochrome reverse video are displayed alternately.

The repetition cycle of alternate display is about 1 second.

The relationship between C and B registers and cursor display is shown in the following table.

С	В	Cursor display
0	0	Non-display
0	1	Non-display
1	0	Display in monochrome reverse
		video
1	1	Alternate display of display charac
		ters in normal video and display
		characters in monochrome reverse
		video

The cursor display position corresponds to the position indicated by address counter.

Accordingly, to move the cursor, change the address counter value by the RAM Address Set command or auto increment by writing RAM data.

If the address counter is set at the symbol register position with (C, B) = (1, 0), symbols can be caused to blink selectively.

(3) Power Save

This command is used to control the oscillating circuit and set and reset sleep mode.

	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	0	0	*	*	0	PS	
* : Don't Care									ire		
	PS		= 0) :	Pow	er sa	ve O	FF (1	reset))	

1	: Power save	ON (set)

- 0 = 0: Oscillating circuit OFF (stop of oscillation)
 - : Oscillating circuit ON (oscilla 1 tion)

(4) Power Control

This command is used to control the operation of the built-in power circuit.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	VC	VF	Р

Р	= 0	: Boosting circuit OFF
	1	: Boosting circuit ON

Note: To operate the boosting circuit the oscillating circuit must be in operation.

VF	: Voltage follower OFF : Voltage follower ON

VC	= 0 1	: Voltage regulating circuit OFF : Voltage regulating circuit ON
		8 8 8

(5) System Set

This command set the use or non-use of display lines and CG RAM.

Execute this command first after turning on the power supply or after resetting.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	1	0	0	N2	N1	*	PS	
							*	: Dor	n't Ca	are
CG		= 0	:	Use	of C	G RA	ΑM			
	1 : Non-use of CG RAM									
N2		N1								
0		0	:	2 lin	es					
0	1 : 3 lines									
1	0 : 4 lines									

(6) Electronic Volume Register Set This command controls the liquid crystal driving voltage V5 output from the voltage regulating circuit of the built-in liquid crystal power supply, thereby adjusting the gradation of liquid crystal display.

When data is set in the 4-bit register, the liquid crystal driving voltage can take one of 16 voltage states.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	1	1	MSB	*	*	LSB
-						He	ex Co	ode	
						70	H ~7	7FH	

MSB			LSB	V5	Iref
0	0	0	0	Small	0.0μΑ
			:	:	:
			:	:	:
1	1	1	1	Large	3.65µA

When the electronic volume function is not used, set (A3, A2, A1, A0) = (0, 0, 0, 0).

(7) RAM Address Set

This command sets addresses to write data into the DD RAM, CG RAM and symbol register in the address counter.

When the cursor is displayed, the cursor is displayed at the display position corresponding to the DDRAM address set by this command.

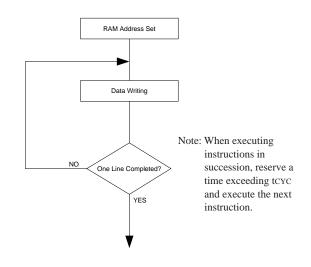
A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1			AD	DRE	ESS		

- ① The settable address length is ADDRESS = 00H to 7FH.
- ② Before writing data into the RAM, set the data write address by this command. Next, when data is written in succession, the address is automatically incremented.

RAM Map

	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0 O H		С	GR	ΑΜ	(00	H)		—		С	GR	ΑΜ	(01	H)		-
10H		С	GR	ΑΜ	(02	H)		-		С	GR	ΑΜ	(03	H)		-
20H							ι	Jnuse	d							
3 0 H			DD	RAM	line 1										Unus	ed
4 0 H			DD	RAM	line 2			Fo	r signa	ıls					"	
50H			DD	RAM	line 3										"	
60H			DD	RAM	line 4										"	
7 0 H			Sy	mbol r	egiste	er									"	

Unused
 For signals : Output from SEGS2 to SEGS6.


(8) Data Write

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0		DATA						

- ① This command writes data into the DD RAM, CG RAM or symbol register.
- ② After this command is executed, the address counter is automatically incremented by 1. This permits writing data in succession.

<Example of Data Writing>

The following is an example of writing one-line data into the DD RAM in succession.

					Сс	de					
Command	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Cursor Home	0	0	0	0	0	1	*	*	*	*	Moves the cursor to the home position.
(2) Display ON/OFF Control	0	0	0	0	1	1	С	В	DC	D	Sets cursor ON/OFF (C), cursor blink ON//OFF (B), double cursor ON/OFF (DC) and display ON/OFF (D). C = 1 (cursor ON) 0 (cursor OFF), B = 1 (blink ON) 0 (blink OFF) DC = 1 (double cursor ON) 0 (double cursor OFF), D = 1 (display ON) D = 0 (display OFF)
(3) Power Save	0	0	0	1	0	0	*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (0). PS = 1 (power save ON) 0 (power save OFF), 0 = 1 (oscillating circuit ON) 0 (oscillating circuit OFF)
(4) Power Control	0	0	0	1	0	1	0	VC	VF	Р	Sets voltage regulating circuit ON/OFF and boosting circuit ON/OFF (P). VC = 1 (voltage regulating circuit ON) 0 (voltage regulating circuit OFF) VF = 1 (voltage follower ON) 0 (voltage follower OFF), P = 1 (boosting circuit ON) 0 (boosting circuit OFF)
(5) System Set	0	0	0	1	1	0	N2	N1	*	CG	Sets the use or non-use of CG RAM and display lines (N2, N1). CG = 1 (use of CG RAM) 0 (non-use of CG RAM), N2, N1 = 0, 0 (2 lines) 0, 1 (3 lines) 1, 0 (4 lines)
(6) Electronic Volume Register	0	0	0	1	1	1	M	SB	LS	SB	Sets the electronic volume register value.
(7) RAM Address Set	0	0	1			AD	DR	ESS			Sets the DD RAM, CG RAM or symbol register address.
(8) RAM Write	1	0				DA	TA				Writes data into the DD RAM, CG RAM or symbol register address.
(9) NOP	0	0	0	0	0	0	0	0	0	0	Non-operation command
(10) Test Mode	0	0	0	0	0	0	1	0	1	0	Command for IC chip test. Don't use this command.

Table 4 SED1234/SED1235 Command List

CHARACTER GENERATOR

Character Generator ROM (CG ROM)

The SED1234/1235 is provided with a character generator ROM consisting of a up to 256-type characters. Each character size is 5×7 dots.

Table 5 shows a character code table of the SED1230 Series.

The 4characters of character codes 00H to 03H are set by the System Set command to specify for which of CG ROM and CG RAM they are to be used. The CG ROM of the SED1234/1235 is a mask ROM and compatible with the use-dedicated CG ROM. Please ask us for further information of it.

Regarding changed CG ROM, it is defined in product name as follows:

(Example) S E D 1 2 3 4 D <u>0</u>A

Digit for CG ROM pattern change

SED123*DA*

Table 5

7–22

EPSON

SED123*DB*

SED1234/35 Series

SED123*DG*

Character Generator RAM (CG RAM)

The SED1230 Series is provided with a CG RAM that permits user-programming character patterns so that they can be displayed with a high degree of freedom for signal display.

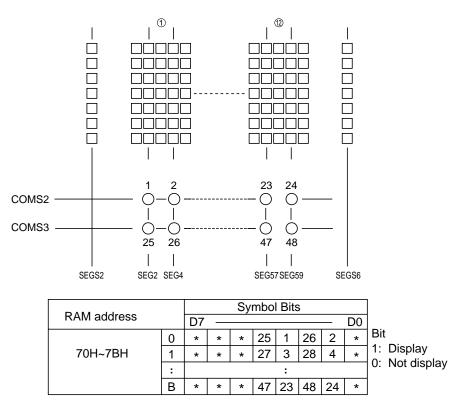
Before using the CG RAM, select the use of CG RAM by the System Set command.

The capacity of the CG RAM is 140 bits and arbitrary patterns of 4 types consisting of 5×7 dots can be registered.

The relationship among CG RAM patterns, CG RAM addresses, and character codes is shown below.

Character code	RAM address		CG	RAN	/I dat	ta (c	hara	cter	patt	ern)	Display
			D7							D0	
00H	00H~06H	0	*	*	*	0	1	1	1	1	
02H	10H~16H	1	*	*	*	1	0	0	0	0	
		2	*	*	*	1	0	0	0	0	
		3	*	*	*	0	1	1	1	1	
		4	*	*	*	0	0	0	0	1	
		5	*	*	*	0	0	0	0	1	
		6	*	*	*	1	1	1	1	0	
01H	08H~0EH	8	*	*	*	0	0	1	0	0	
03H	18H~1EH	9	*	*	*	0	0	1	0	0	
		Α	*	*	*	0	1	1	1	0	
		В	*	*	*	0	1	1	1	0	
		С	*	*	*	0	1	1	1	0	
		D	*	*	*	1	1	1	1	1	
		E	*	*	*	1	1	1	1	1	
			U	nuse	d	С	hara	cter	data	a	

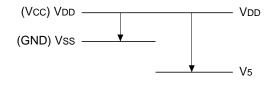
1: Display


0: Non-display

Symbol Register

The SED1234, 1235 provided with a symbol register that permits displaying each symbol so that symbol display may be performed on the screen.

The capacity of the symbol register is 48 bits. In case of 48 symbols can be displayed.


The relationship among symbol register display patterns, RAM addresses and write data is shown below.

- Notes: 1. We recommend to drive a symbol by dividing it into COMS2 and COMS3 separately if it is larger than other dots for 1.5 times or more.
 - 2. Do not cross a segment (other than those used for symbol display) with COMS2 or COMS3. If segment crossing is required, set the symbol registers of COMS3 to all zeros (0s).

ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit
Power supply voltage	(1)	Vss	-6.0~+0.3	V
Power supply voltage	(2)	V5	-16.0~+0.3	V
Power supply voltage	(3)	V1, V2, V3, V4	V5~+0.3	V
Input voltage		Vin	Vss-0.3~+0.3	V
Output voltage		Vo	Vss-0.3~+0.3	V
Operating temperature		Topr	-30~+85	°C
Storago tomporaturo	TCP	Tstr	-55~+100	°C
Storage temperature	Bare chip	ı str	-65~+125	

- Notes: 1. All the voltage values are based on VDD = 0 V.
 - For voltages of V1, V2, V3 and V4, keep the condition of VDD ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ V5 and VDD ≥ VSS ≥ V5 ≥ V0UT at all times.
 - 3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction. In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the reliability of the LSI.

SED1234/35 Series

DC CHARACTERISTICS

VDD = 0 V, Vss = -3.6 V to -2.4 V, Ta = -30 to $85^{\circ}C$ unless otherwise specified.

	Item	Symbol		Condition	min	typ	max	Unit	Applicable pin
Power	Recommended				-3.6	-3.0	-2.4	V	Vss
supply	operation	Vss							
voltage	(1) Operable				-5.5	-3.0	-2.4		*1
Power	Recommended				-8.0		-5.0	V	V5
supply	operation	V 5							
voltage	(2) Operable				-11.0		-4.5		*2
	Operable	V1, V2			0.6×V5		Vdd	V	V1, V2
	Operable	V3, V4			Vdd		0.4×V5	V	V3, V4
High-lev	vel input voltage	VIHC			0.2×Vss		Vdd	V	*3
Low-lev	vel input voltage	VILC			Vss		0.8×Vss	V	*3
Input le	akage current	ILI	VIN = VDD or VS	is –1.0		1.0	μA	*3	
	er ON resistance	Ron	Ta=25℃	V5=-7.0V		20	40	KΩ	COM,SEG
			ΔV=0.1V						*4
Static c	urrent consumption	Iddq				0.1	5.0	μA	Vdd
Dynami	ic current	Idd	Display state	V ₅ = -7 V without load			100	μA	Vdd *5
consum	nption		Standby state	Oscillation ON,			20	μA	VDD *6
			-	Power OFF					
			Sleep state	Oscillation OFF,			5	μA	Vdd
			-	Power OFF					
			Access state	fcyc=200KHz			500	μA	Vdd *7
Frame f	frequency	ffr	Ta=25°C Vs	s=-3.0V	70	100	130	Hz	*11
Input pi	n capacity	Cin	Ta=25°C f=1	MHz		5.0	8.0	рF	*3
Reset ti	ime	tR			1.0			μs	*8
	oulse width	tRW			10			μs	*9
	tart time	tRES			50			ns	*9
	nput voltage	Vss			-3.6		-2.4	V	*10
≥ B	ooster output voltage	Vout	Double boosting		-7.2			V	Vout
ddns			Triple boosting	state	-10.8				
0 1	oltage follower	V 5			-11.0		-4.5	V	
Nod 0	perating voltage		-						
R I	eference voltage	Vreg	Ta = 25°C		-3.5	-3.1	-2.7	V	*12
Built (a	standard)								
R	eference voltage	VREG(VS1)	Ta = 25°C		-2.4	-2.1	-1.8	V	*12
(0	option)								

- *1: A wide operating voltage range is guaranteed but an abrupt voltage variation in the access status of the MPU is not guaranteed.
- *2: The operating voltage range is applicable to the case where an external power supply is used.
- *3: D0 ~ D5, D6 (SCL), D7 (SI), A0, RES, CS WR (E), P/S, IF
- *4: This is a resistance value when a voltage of 0.1 V is applied between output pin SEGn, SEGSn, COMn or

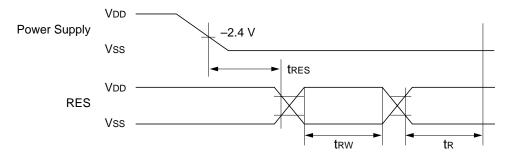
COMSn, and each power pin (V1, V2, V3 or V4). It is specified in the range of operating voltage (2).

 $Ron = 0.1 V / \Delta I$

(Δ I: Current flowing when 0.1 V is applied between the power and output)

*5: Character " display.

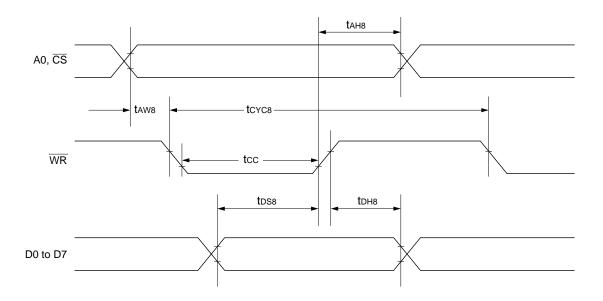
" display. This is applicable to the


case where no access is made from the MPU and the built-in power circuit and oscillating circuit are in operation.

- *6: This is applicable to the case where the built-in power circuit is OFF and the oscillating circuit is in operation in the standby mode.
- *7: Current consumption when data is always written by fcyc.
 The current consumption in the access state is almost proportional to the access frequency (fcyc).
 When no access is made, only IDD (I) occurs.
- *8: tR (reset time) indicates the internal circuit reset completion time from the edge of the RES signal. Accordingly, the SED123* usually enters the operating state after tR.
- *9: Specifies the minimum pulse width of the RES signal. It is reset when a signal having the pulse width greater than tRW is entered.

- *10: When operating the boosting circuit, the power supply Vss must be used within the input voltage range.
- *11: The fosc frequency of the oscillator circuit for internal circuit drive may differ from the fBST boosting clock on some models. The following provides the relationship between the fOSC frequency, fBST boosting clock, and fFR frame frequency.

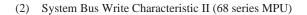
 $\begin{aligned} &\text{fosc} = (\text{No. of digits}) \times (1/\text{Duty}) \times \text{fFR} \\ &\text{fbst} = (1/2) \times (1/\text{No. of digits}) \times \text{fosc} \\ &\text{Example: The SED1230 has 13 digits of display} \\ &\text{and } 1/30 \text{ duty.} \\ &\text{fosc} = 13 \times 30 \times 100 = 39 \text{ kHz} \\ &\text{fbst} = (1/2) \times (1/13) \times 39 \text{ K} = 1.5 \text{ kHz} \end{aligned}$

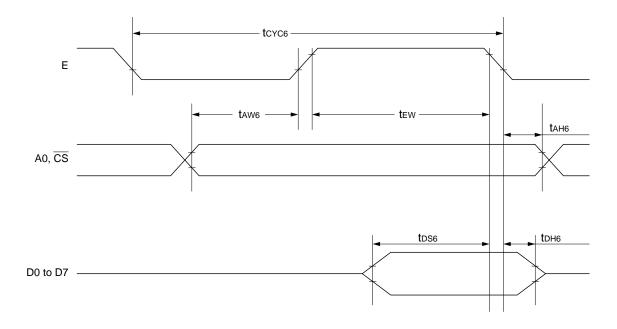

*12: The VREG reference voltage has the temperature characteristics of approximately -0.17%/°C (standard specifications). An optional model having the temperature characteristics of approximately -0.04%/°C is also available. The CGROM modification rules apply to the optional models.

All signal timings are based on 20% and 80% of Vss signals.

TIMING CHARACTERISTICS

(1) System Bus Write Characteristic I (80 series MPU)


[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]


Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	t AH8		30		ns
Address setup time		t AW8		60		ns
System cycle time	WR	t CYC8	Vss = -3.0	500		ns
			-2.7	550		
			-2.4	650		
Control pulse width (WR)		t cc	Vss = -3.0	100		ns
			-2.7	120		
			-2.4	150		
Data setup time	D0 ~ D7	t DS8		100		ns
Data hold time		t DH8		50		ns

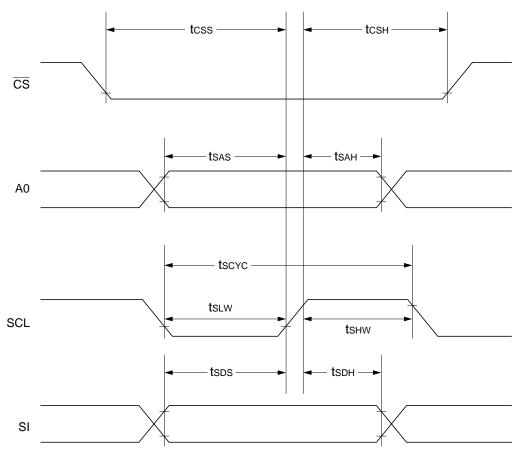
*1: For the rise and fall of an input signal, set a value not exceeding 25 ns.

*2: Every timing is specified on the basis of 20% and 80% of Vss.

*3: For A0 and \overline{CS} , the same time is not required. Input signals so that A0 and \overline{CS} may satisfy tAW8 and tAH8 respectively.

$[Vss = -3.6 V to -2.4 V, Ta = -30 to 85^{\circ}C unless otherwise specified$	[Vss = -3.6 V to -2.4 V, Ta = -30 to 85	5°C unless otherwise specified
---	---	--------------------------------

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, CS	t CYC6	Vss = -3.0	500		ns
			-2.7	550		
			-2.4	650		
Address setup time		t AW6		60		
Address hold time		t AH6		30		ns
Data setup time	D0 ~ D7	t DS6		100		ns
Data hold time		t DH6		50		ns
Enable pulse width	E	t EW	Vss = -3.0	100		ns
			-2.7	120		
			-2.4	150		


*1: tCYC6 denotes the cycle of the E signal in the \overline{CS} active state. tCYC6 must be reserved after \overline{CS} becomes active.

*2: For the rise and fall of an input signal, set a value not exceeding 25 ns.

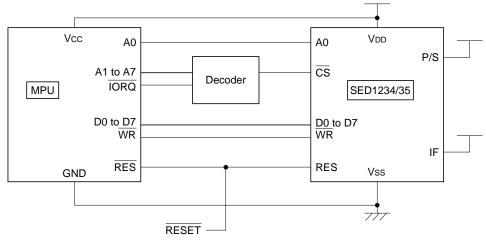
*3: Every timing is specified on the basis of 20% and 80% of Vss.

*4: For A0 and \overline{CS} , the same timing is not required. Input signals so that A0 and \overline{CS} may satisfy tAW6 and tAH6 respectively.

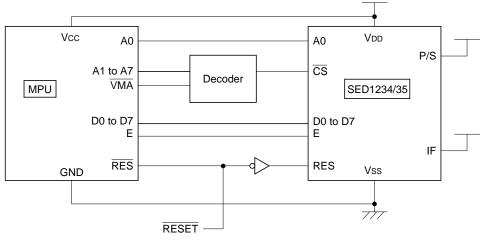
(3) Serial Interface

[Vss = -3.6 V to -2.4 V, Ta = -30 to 85°C]

			[100 -		1 v , ra = 0	
ltem	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tscyc	Vss = -3.0	700		ns
			-2.7	800		ns
			-2.4	1000		ns
SCL "H" pulse width		tshw		300		ns
SCL "L" pulse width		tsLW		300		ns
Address setup time	A0	tsas		50		ns
Address hold time		tSAH	Vss = -3.0	350		ns
			-2.7	400		ns
			-2.4	500		ns
Data setup time	SI	tsds		50		ns
Data hold time		tSDH		50		ns
CS-SCL time	CS	tcss		150		ns
		tcsh	Vss = -3.0	550		ns
			-2.7	650		ns
			-2.4	700		ns


*1: For the rise and fall of an input signal, set a value not exceeding 25 ns.

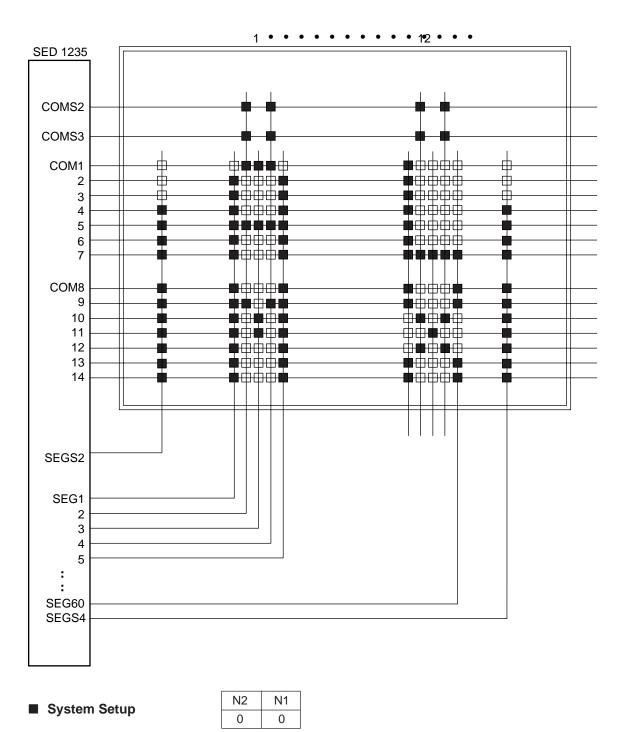
*2: Every timing is specified on the basis of 20% and 80% of Vss.


MPU INTERFACE (REFERENCE EXAMPLES)

The SED1234, 1235 can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the SED1234, 1235 Series can be operated by less signal lines.

80 Series MPU

68 Series MPU

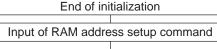


Serial Interface



INTERFACE TO LCD CELLS (REFERENCE)

12 columns by 2 lines, 5×7-dot matrix segments and symbols

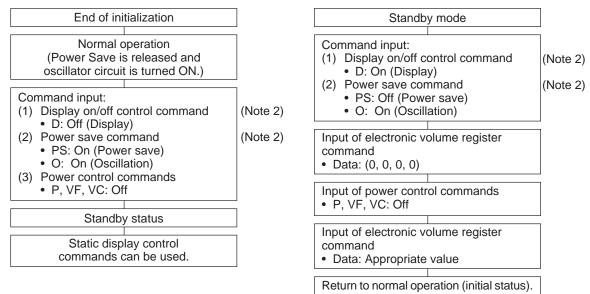


Instruction Setup Example (Reference Only)

(1) Initial setup

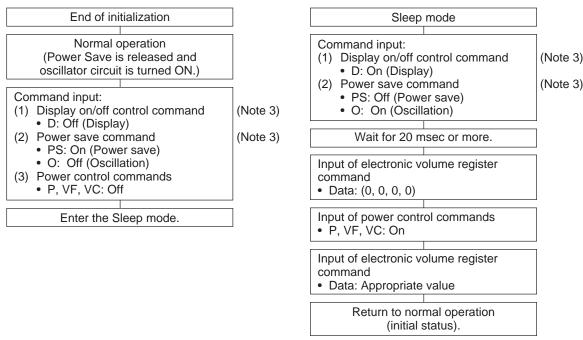
Initial Setap	
VDD-Vss power ON]
Power regulation]
Input of reset signal]
Command status • Static display control : Off • Display on/off control : Off • Power save : Off • Power control : Off • System reset : CG=0 • Others are undefined.	
Waiting for 10 µsec or more]
Command input: (Asterisk indicates any command sequence.) (1) System setup command (*) Static display control command (Valid in Standby mode only) (*) Display on/off control command • D: On (Display) (*) Electronic volume register setup • Data: (0, 0, 0, 0) (*) Power save command • PS: Off (Power save) • O: On (Oscillation) (6) RAM address setup (7) Data writing	(Note 1) (Note 1)
Waiting for 20 msec or more]
Command input (8) Power control commands • P, VF, VC: On	
Command input: (9) Electronic volume register setup • Data: Appropriate value	
End of initialization]

(2) Display mode


Input of RAM (data) write command

Display of written data

- Note 1: Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area must satisfy the following conditions (for RAM clear).
 - DDRAM: Write the 20H data (character code).
 - CGRAM: Write the 00H data (null data).
 - Symbol register: Write the 00H data (null data).


As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not, unexpected display may result.

(3-1) Selecting the Standby mode

Note 2: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

(4-1) Selecting the Sleep mode

Note 3: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

(4-2) Releasing the Sleep mode

(3-2) Releasing the Standby mode

SED1240 Series LCD Controller/Drivers

Technical Manual

Contents

8-1
8-1
8-2
8-3
8-10
8-13
8-22
8-37
8-52
8-53
8-55
8-58
8-59
8-62
8-65
8-66
-

OVERVIEW

The SED1240 Series is a character display dot matrix LCD controller driver. This driver can display up to 64 characters and 6 user-defined characters, and up to 160 symbols according to the 4-bit, 8-bit or serial data which is sent from a microcomputer.

The built-in character generator ROM is provided with up to 544 types of character fonts having a structure of 5 × 8 dots. Up to 256 types can be continuously called by register option selection. This can cope with many different character fonts by uses and countries and permits a wider range of use. This driver incorporates a userdefined character RAM for 6 characters of 5×8 dots and can be used for the display of higher degree of freedom by means of a symbol register.

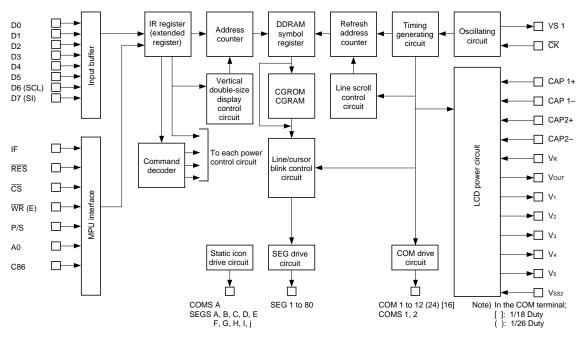
The driver can operate handy units at the minimum power consumption by using its merit of lower power consumption, standby mode, and sleep mode.

FEATURES

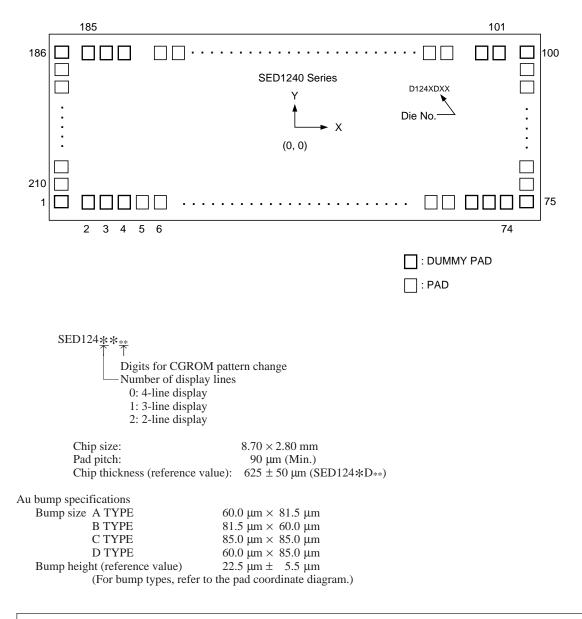
- Built-in display data RAM 80-character + 6-character user-defined characters + 160 symbols
- CGROM (for up to 544 characters), CGRAM (6 characters), symbol register (160 symbols)
- Display digits × Number of lines <Ordinary mode>
 - ① (16 digits) × 4 lines + 160 symbols + 10 static irons (SED1240)
 - (2) (16 digits) × 3 lines + 160 symbols + 10 static icons (SED1241)
 - (3) (16 digits) × 2 lines + 160 symbols + 10 static icons (SED1242)
 - <Standby mode>
 - (1) 10 static icons (SED1240)
 - 2 10 static icons (SED1241)
 - 3 10 static icons (SED1242)
- Vertical double-size display function
- Line vertical scroll function
- Line blink function
- Symbol blink function

- Built-in CR oscillating circuit (Built-in C, R)
- External clock input
- High-speed MPU interface Interface with both MPUs of 68 series/80 series Interface by 4 bits/8 bits
- Serial interface
- Character font 5×8 dots
 - Duty ratio ① 1/34 (SED1240)
 - 2 1/26 (SED1241)
 - ③ 1/18 (SED1242)
- Simple command setup
- Built-in liquid crystal drive power circuit The boosting circuit, voltage regulating circuit, voltage follower × 4, and resistor for power regulating circuit for bias select commands are incorporated.
- Built-in electronic volume function
- Lower power consumption

80 µA max	(at ordinary operation (during
	display): Including the internal
	power supply operating current)
500 µA max	(at ordinary operation (during
•	access): $fcyc = 200$ KHz,
	including the internal power
	supply operating current)
20 µA max	(in standby mode: Oscillation
	ON, power OFF, static icon
	display)
5 µA max	(in sleep mode: oscillation OFF,
	power OFF, display OFF)


Power supply:	
VDD - VSS	1.8 V to 5.5 V
VDD - VSS2	1.8 V to 5.5 V

- VDD V5 5.5 V to 16.0 V
- Wide operating temperature range Ta = -30 to $+85^{\circ}C$
 - CMOS process
- Pad pitch 90 µm Min
- Delivery form Chip (gold bump product) TCP


SED124*D** SED124*T**

• This IC is not designed against radiation and strong light and noise.

CHIP SPECIFICATIONS

Note: The board of this IC has VDD potential. It is recommended to stabilize power supply by connecting the board to the VDD potential at the time of mounting.

<Pad Coordinates> SED1240***

	PAD	COORD	INATES		PAD	COORD	INATES
No.	Name [BUMP TYPE]	Х	Y	No.	Name [BUMP TYPE]	Х	Y
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 9\\ 20\\ 12\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 1\\ 32\\ 3\\ 34\\ 35\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 9\\ 51\\ 52\\ 53\\ 54\\ \end{array} $	NC [B TYPE] NC [C TYPE] DX [C TYPE] D7 [C TYPE] D5 [C TYPE] D4 [C TYPE] D3 [C TYPE] D4 [C TYPE] D0 [C TYPE] D1 [C TYPE] D2 [C TYPE] D4 [C TYPE] D5 [C TYPE] D0 [C TYPE] VDD [D TYPE] VDD [D TYPE] VDD [D TYPE] V5 [D TYPE] V4 [D TYPE] V3 [D TYPE] V2 [D TYPE] V3 [D TYPE] V1 [D TYPE] V2 [D TYPE] V3 [D TYPE] V4 <td>$\begin{array}{c} -4191\\ -3941\\ -3941\\ -3836\\ -3555\\ -3403\\ -3283\\ -3163\\ -3283\\ -3163\\ -3043\\ -2922\\ -2802\\ -2682\\ -2562\\ -2441\\ -2321\\ -2201\\ -2089\\ -1999\\ -1909\\ -1820\\ -1730\\ -1641\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1371\\ -1282\\ -1192\\ -1102\\ -1013\\ -923\\ -833\\ -744\\ -654\\ -474\\ -385\\ -295\\ -205\\ -116\\ -26\\ 64\\ 153\\ 243\\ 333\\ 423\\ 512\\ 602\\ 692\\ 781\\ 871\\ 961\\ 1050\\ \end{array}$</td> <td>-1250 -1237</td> <td>$\begin{array}{c} 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 79\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 89\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ 98\\ 99\\ 100\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ \end{array}$</td> <td>P/S [C TYPE] VDD [C TYPE] IF [C TYPE] IF [C TYPE] VSS [C TYPE] C86 [C TYPE] VDD [C TYPE] RES [C TYPE] VDD [C TYPE] (FSA) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS2) [C TYPE] (FS3) [C TYPE] VDD [C TYPE] NC [C TYPE] SEGSG [B TYPE] COMSA [B TYPE]</td> <td>1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191</td> <td>-1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240</td>	$\begin{array}{c} -4191\\ -3941\\ -3941\\ -3836\\ -3555\\ -3403\\ -3283\\ -3163\\ -3283\\ -3163\\ -3043\\ -2922\\ -2802\\ -2682\\ -2562\\ -2441\\ -2321\\ -2201\\ -2089\\ -1999\\ -1909\\ -1820\\ -1730\\ -1641\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1371\\ -1282\\ -1192\\ -1102\\ -1013\\ -923\\ -833\\ -744\\ -654\\ -474\\ -385\\ -295\\ -205\\ -116\\ -26\\ 64\\ 153\\ 243\\ 333\\ 423\\ 512\\ 602\\ 692\\ 781\\ 871\\ 961\\ 1050\\ \end{array}$	-1250 -1237	$\begin{array}{c} 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 79\\ 80\\ 81\\ 82\\ 83\\ 84\\ 85\\ 86\\ 87\\ 88\\ 89\\ 90\\ 91\\ 92\\ 93\\ 94\\ 95\\ 96\\ 97\\ 98\\ 99\\ 100\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ \end{array}$	P/S [C TYPE] VDD [C TYPE] IF [C TYPE] IF [C TYPE] VSS [C TYPE] C86 [C TYPE] VDD [C TYPE] RES [C TYPE] VDD [C TYPE] (FSA) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS2) [C TYPE] (FS3) [C TYPE] VDD [C TYPE] NC [C TYPE] SEGSG [B TYPE] COMSA [B TYPE]	1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191	-1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240

	PAD	COORD	INATES		PAD	COORD	INATES
No.	Name [BUMP TYPE]	Х	Y	No.	Name [BUMP TYPE]	Х	Y
109	SEG7 [A TYPE]	3009	1240	160	SEG58 [A TYPE]	-1566	1240
110	SEG8 A TYPE	2919		161	SEG59 A TYPE	-1655	
111	SEG9 [A TYPE]	2830		162	SEG60 [A TYPE]	-1745	
112	SEG10 [A TYPE]	2740		163		-1835	
113	SEG11 [A TYPE]	2650		164		-1924	
114		2561		165		-2014	
115		2471		166		-2104	
	SEG14 [A TYPE]	2381			SEG65 [A TYPE]	-2194	
117		2291			SEG66 [A TYPE]	-2283	
		2202		169		-2373	
		2112			SEG68 [A TYPE]	-2463	
	SEG18 [A TYPE]	2022		171		-2552	
121		1933		172			
122		1843			SEG71 [A TYPE]	-2732	
	SEG21 [A TYPE]	1753			SEG72 [A TYPE]	-2821	
124		1664		175		-2911	
125		1574 1484		176	SEG74 [A TYPE] SEG75 [A TYPE]	-3001	
120		1464		178		-3091 -3180	
127		1394			SEG77 [A TYPE]	-3180	
120	SEG27 [A TYPE]	1215			SEG78 [A TYPE]	-3360	
130		11215		181		-3449	
131		1036		182		-3539	
132		946		183		-3704	
133		856		184			
	SEG32 [A TYPE]	767		185		-3915	+
	SEG33 [A TYPE]	677		186		-4191	1251
136		587		187	- L - J		1131
137		497		188			1041
138	SEG36 A TYPE	408		189			951
139	SEG37 [A TYPE]	318		190	COM30 [B TYPE]		861
140	SEG38 [A TYPE]	228		191	COM29 [B TYPE]		772
141		139		192			682
142		49		193			592
	SEG41 [A TYPE]	-41		194			503
144		-130		195			413
145		-220		196			323
146		-310		197			234
147		-400			COM22 [B TYPE]		144
148		-489		199			54
149		-579		200	COM20 [B TYPE]		-36
	SEG48 [A TYPE]	-669		201			-125
151		-758		202			-215
	SEG50 [A TYPE] SEG51 [A TYPE]	-848 -938		203			-305 -394
153		-938 -1027		204			-394 -497
154		-1027		205			-497 -617
155		-1207		200	<u></u>		-737
150		-1207		207			-858
158		-1386		200			-978
159	SEG57 [A TYPE]	-1476	↓	210	COMSA [B TYPE]	¥	-1098
109		-1+70		210	COMOR [D TITE]		-1030

(FS*) : This is a FUSE adjusting pin. Set it is the floating state. CK pin : Fix it to VDD when it is not used.

EPSON

<Pad coordinates> SED1241***

	PAD	COORD	INATES		PAD	COORD	INATES
No.	Name [BUMP TYPE]	X	Y	No.	Name [BUMP TYPE]	Х	Y
No. 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 2 3 2 4 5 6 7 8 9 10 11 2 2 3 2 4 5 6 7 8 9 10 11 2 2 3 4 4 5 6 7 8 9 10 11 2 2 3 4 4 5 6 7 8 9 10 11 2 2 3 4 4 5 6 7 8 9 10 11 2 2 3 4 4 5 6 7 8 9 10 11 2 2 3 4 4 5 6 7 8 9 10 11 2 13 4 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	NC [B TYPE] NC [C TYPE] D7 [C TYPE] D6 [C TYPE] D5 [C TYPE] D4 [C TYPE] D3 [C TYPE] D4 [C TYPE] D5 [C TYPE] D0 [C TYPE] D1 [C TYPE] D2 [C TYPE] D3 [C TYPE] D4 [C TYPE] D5 [C TYPE] D0 [C TYPE] VDD [D TYPE] VDD [D TYPE] VSS [D TYPE] V4 [D TYPE] V3 [D TYPE] V4 [D TYPE] V2 [D TYPE] V3 [D TYPE] V4 [D TYPE] V0 <td>$\begin{array}{c} -4191\\ -3941\\ -3941\\ -3943\\ -3836\\ -3555\\ -3403\\ -3283\\ -3163\\ -3043\\ -2922\\ -2802\\ -2682\\ -2682\\ -2682\\ -2682\\ -2682\\ -2262\\ -2441\\ -2321\\ -2089\\ -1999\\ -1909\\ -1820\\ -1730\\ -1641\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1371\\ -1282\\ -1102\\ -1013\\ -923\\ -833\\ -744\\ -654\\ -564\\ -474\\ -385\\ -295\\ -205\\ -116\\ -26\\ 64\\ 153\\ 243\\ 333\\ 423\\ 512\\ 602\\ 692\\ 781\\ 871\\ 961\\ 1050\\ 1183\\ 1303\\ \end{array}$</td> <td>Y -1250 -1237</td> <td>No. 555 566 577 588 599 600 61 62 63 64 65 66 677 78 74 755 766 777 788 89 901 81 82 83 84 85 86 877 990 901 91 92 933 94 955 966 977 98 900 101 102 103 104 105 106 107 108 107</td> <td>P/S [C TYPE] VDD [C TYPE] IF [C TYPE] VSS [C TYPE] VSS [C TYPE] VDD [C TYPE] RES [C TYPE] VDD [C TYPE] RES [C TYPE] (FSA) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS1) [C TYPE] (FS2) [C TYPE] VDD [C TYPE] VDD [C TYPE] NC [C TYPE] SEGSF [B TYPE] COMSA [B TYPE] <</td> <td>X 1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191</td> <td>Y -1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240 -</td>	$\begin{array}{c} -4191\\ -3941\\ -3941\\ -3943\\ -3836\\ -3555\\ -3403\\ -3283\\ -3163\\ -3043\\ -2922\\ -2802\\ -2682\\ -2682\\ -2682\\ -2682\\ -2682\\ -2262\\ -2441\\ -2321\\ -2089\\ -1999\\ -1909\\ -1820\\ -1730\\ -1641\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1371\\ -1282\\ -1102\\ -1013\\ -923\\ -833\\ -744\\ -654\\ -564\\ -474\\ -385\\ -295\\ -205\\ -116\\ -26\\ 64\\ 153\\ 243\\ 333\\ 423\\ 512\\ 602\\ 692\\ 781\\ 871\\ 961\\ 1050\\ 1183\\ 1303\\ \end{array}$	Y -1250 -1237	No. 555 566 577 588 599 600 61 62 63 64 65 66 677 78 74 755 766 777 788 89 901 81 82 83 84 85 86 877 990 901 91 92 933 94 955 966 977 98 900 101 102 103 104 105 106 107 108 107	P/S [C TYPE] VDD [C TYPE] IF [C TYPE] VSS [C TYPE] VSS [C TYPE] VDD [C TYPE] RES [C TYPE] VDD [C TYPE] RES [C TYPE] (FSA) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS1) [C TYPE] (FS2) [C TYPE] VDD [C TYPE] VDD [C TYPE] NC [C TYPE] SEGSF [B TYPE] COMSA [B TYPE] <	X 1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191	Y -1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240 -

	PAD	COORD	INATES		PAD	COORD	INATES
No.	Name [BUMP TYPE]	Х	Y	No.	Name [BUMP TYPE]	Х	Y
109	SEG7 [A TYPE]	3009	1240	160	SEG58 [A TYPE]	-1566	1240
110	SEG8 [A TYPE]	2919		161	SEG59 [A TYPE]	-1655	
111	SEG9 [A TYPE]	2830		162	SEG60 [A TYPE]	-1745	
112				163		-1835	
	SEG11 [A TYPE]	2650		164		-1924	
114		2561		165	L - J	-2014	
115				166		-2104	
	SEG14 [A TYPE]	2381			SEG65 [A TYPE]	-2194	
117		2291			SEG66 [A TYPE]	-2283	
118				169		-2373	
119		2112			SEG68 [A TYPE]	-2463	
	SEG18 [A TYPE]	2022		171	L	-2552	
121				172		-2642	
122	SEG20 [A TYPE] SEG21 [A TYPE]	1843 1753			SEG71 [A TYPE] SEG72 [A TYPE]	-2732 -2821	
123				175		-2021	
124		1574			SEG74 [A TYPE]	-3001	
	SEG24 [A TYPE]	1484		177		-3091	
127		-		178		-3180	
128		1305			SEG77 [A TYPE]	-3270	
129	SEG27 [A TYPE]	1215			SEG78 [A TYPE]	-3360	
130		-		181		-3449	
131	SEG29 [A TYPE]	1036		182	SEG80 [A TYPE]	-3539	
132		946		183	NC ja typej	-3704	
133		856		184	NC [A TYPE]	-3810	
134		767		185	NC [A TYPE]	-3915	*
	SEG33 [A TYPE]	677		186		-4191	1251
136				187			1131
137		497			*COM32 [B TYPE]		1041
	SEG36 [A TYPE]	408			*COM31 [B TYPE]		951
139	SEG37 [A TYPE]			190			861
140		228			*COM29 [B TYPE]		772
141		139 49		192			682 592
	SEG40 [A TYPE] SEG41 [A TYPE]	-49			*COM27 [B TYPE] *COM26 [B TYPE]		503
144		-130			*COM25 [B TYPE]		413
145	SEG43 [A TYPE]			196			323
146		-310			*COM23 [B TYPE]		234
147		-400			*COM22 [B TYPE]		144
148		-489		199	*COM21 [B TYPE]		54
149		-579		200	*COM20 [B TYPE]		-36
	SEG48 [A TYPE]			201			-125
151					*COM18 [B TYPE]		-215
	SEG50 [A TYPE]				*COM17 [B TYPE]		-305
	SEG51 [A TYPE]	-938		204			-394
154				205			-497
155		-1117		206			-617
156		-1207		207			-737
157				208			-858
158				209		Ļ	-978
159	SEG57 [A TYPE]	-1476	4	210	COMSA [B TYPE]	•	-1098

(FS*) : This is a FUSE adjusting pin. Set it in the floating state.
 CK pin : Fix it to VDD when it is not used.
 *: Don't connect COM17 to COM32.

<Pad coordinates> SED1242***

	PAD	COORD	INATES		PAD	COORD	INATES
No.	Name [BUMP TYPE]	X	Y	No.	Name [BUMP TYPE]	Х	Y
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 20 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 1 \\ 32 \\ 33 \\ 4 \\ 35 \\ 6 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \\ 55 \\ 53 \\ 54 \\ \end{array} $	NC [B TYPE] NC [C TYPE] D7 [C TYPE] D5 [C TYPE] D4 [C TYPE] D3 [C TYPE] D4 [C TYPE] D5 [C TYPE] D0 [C TYPE] D1 [C TYPE] D2 [C TYPE] D3 [C TYPE] VDD [D TYPE] VDD [D TYPE] VDD [D TYPE] VSS [D TYPE] V5 [D TYPE] V3 [D TYPE] V3 [D TYPE] V1 [D TYPE] V2 [D TYPE] V3 [D TYPE] V1 [D TYPE] V2 [D TYPE] V3 [D TYPE] V6 </td <td>$\begin{array}{c} -4191\\ -3941\\ -3941\\ -3943\\ -3836\\ -3555\\ -3403\\ -3283\\ -3163\\ -3043\\ -2922\\ -2802\\ -2682\\ -2682\\ -2682\\ -2682\\ -2682\\ -2262\\ -2441\\ -2321\\ -2089\\ -1999\\ -1909\\ -1820\\ -1730\\ -1641\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1641\\ -385\\ -295\\ -1102\\ -1013\\ -923\\ -833\\ -744\\ -654\\ -564\\ -474\\ -385\\ -295\\ -205\\ -116\\ -26\\ 64\\ 153\\ 243\\ 333\\ 423\\ 512\\ 602\\ 692\\ 781\\ 871\\ 961\\ 1050\\ 1183\\ 1303\\ \end{array}$</td> <td>-1250 -1237</td> <td>NO. 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 74 75 76 77 78 79 80 81 82 83 84 85 86 877 98 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107</td> <td>P/S [C TYPE] VDD [C TYPE] IF [C TYPE] VSS [C TYPE] VSS [C TYPE] VBD [C TYPE] VDD [C TYPE] RES [C TYPE] VDD [C TYPE] (FSA) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS2) [C TYPE] (FS3) [C TYPE] VDD [C TYPE] NC [C TYPE] SEGSF [B TYPE]</td> <td>× 1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191 3915 3810 3547 3458 3368 3278 3188 3099</td> <td>-1237 -1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240 •</td>	$\begin{array}{c} -4191\\ -3941\\ -3941\\ -3943\\ -3836\\ -3555\\ -3403\\ -3283\\ -3163\\ -3043\\ -2922\\ -2802\\ -2682\\ -2682\\ -2682\\ -2682\\ -2682\\ -2262\\ -2441\\ -2321\\ -2089\\ -1999\\ -1909\\ -1820\\ -1730\\ -1641\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1551\\ -1461\\ -1641\\ -385\\ -295\\ -1102\\ -1013\\ -923\\ -833\\ -744\\ -654\\ -564\\ -474\\ -385\\ -295\\ -205\\ -116\\ -26\\ 64\\ 153\\ 243\\ 333\\ 423\\ 512\\ 602\\ 692\\ 781\\ 871\\ 961\\ 1050\\ 1183\\ 1303\\ \end{array}$	-1250 -1237	NO. 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 74 75 76 77 78 79 80 81 82 83 84 85 86 877 98 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	P/S [C TYPE] VDD [C TYPE] IF [C TYPE] VSS [C TYPE] VSS [C TYPE] VBD [C TYPE] VDD [C TYPE] RES [C TYPE] VDD [C TYPE] (FSA) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS2) [C TYPE] (FS3) [C TYPE] VDD [C TYPE] NC [C TYPE] SEGSF [B TYPE]	× 1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191 3915 3810 3547 3458 3368 3278 3188 3099	-1237 -1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240 •

	PAD	COORD	INATES		PAD	COORD	INATES
No.	Name [BUMP TYPE]	Х	Y	No.	Name [BUMP TYPE]	Х	Y
109	SEG7 [A TYPE]	3009	1240	160	SEG58 [A TYPE]	-1566	1240
110	SEG8 [A TYPE]	2919		161	SEG59 [A TYPE]	-1655	
111	SEG9 JA TYPE	2830		162	SEG60 ja typej	-1745	
112	SEG10 JA TYPE	2740		163		-1835	
113	SEG11 JA TYPE	2650		164	SEG62 JA TYPE	-1924	
114	SEG12 A TYPE	2561		165		-2014	
115	SEG13 [A TYPE]	2471		166		-2104	
116	SEG14 [A TYPE]	2381		167	SEG65 [A TYPE]	-2194	
117	SEG15 [A TYPE]	2291		168	SEG66 [A TYPE]	-2283	
118	SEG16 [A TYPE]	2202		169		-2373	
119		2112		170	SEG68 [A TYPE]	-2463	
120	SEG18 [A TYPE]	2022		171	SEG69 [A TYPE]	-2552	
121	SEG19 [A TYPE]	1933		172		-2642	
122	SEG20 [A TYPE]	1843		173		-2732	
123	SEG21 [A TYPE]	1753		174		-2821	
124	SEG22 [A TYPE]	1664		175		-2911	
125	SEG23 [A TYPE]	1574		176		-3001	
126	SEG24 [A TYPE]	1484		177		-3091	
127	SEG25 [A TYPE]	1394		178		-3180	
128	SEG26 [A TYPE]	1305		179		-3270	
129	SEG27 [A TYPE]	1215			SEG78 [A TYPE]	-3360	
130	SEG28 [A TYPE]	1125		181	SEG79 [A TYPE]	-3449	
131	SEG29 [A TYPE]	1036		182	SEG80 [A TYPE]	-3539	
132	SEG30 [A TYPE]	946		183	NC [A TYPE]	-3704	
133	SEG31 [A TYPE]	856		184	NC [A TYPE]		
134		767		185	NC [A TYPE]	-3915	4054
135	SEG33 [A TYPE]	677		186		-4191	1251
136	SEG34 [A TYPE]	587		187			1131
137		497		188			1041
138	SEG36 [A TYPE]	408			*COM31 [B TYPE]		951
139	SEG37 [A TYPE]	318		190			861
140	SEG38 [A TYPE] SEG39 [A TYPE]	228 139		191			772 682
141	SEG40 [A TYPE]	49		192			592
142		-49 41			*COM26 [B TYPE]		503
144		-130			*COM25 [B TYPE]		413
145	SEG42 [A TYPE]	-220		196			323
146	SEG44 [A TYPE]	-310			*COM23 [B TYPE]		234
147		-400			*COM22 [B TYPE]		144
148	SEG46 [A TYPE]	-489		199	*COM21 [B TYPE]		54
149		-579		200	*COM20 [B TYPE]		-36
150		-669		201	*COM19 [B TYPE]		-125
151		-758			*COM18 [B TYPE]		-215
152		-848		203			-305
153		-938		204			-394
154		-1027		205			-497
155		-1117		206			-617
156		-1207		207			-737
157	SEG55 [A TYPE]	-1297		208			-858
158		-1386		209	SEGSE [B TYPE]		-978
159	SEG57 [A TYPE]	-1476	*	210	COMSA [B TYPE]	*	-1098

(FS*) : This is a FUSE adjusting pin. Set it in the floating state.
 CK pin : Fix it to VDD when it is not used.
 *: Don't connect COM17 to COM32.

DESCRIPTION OF PINS

Power Pins

Pin name	I/O	Description	Q'ty
Board potential		IC board is based on VDD potential. To lock the board potential with VDD.	
Vdd	Power supply	Connected to the logic power supply. This is used in common with	6
		the MPU power pin Vcc.	
Vss	Power supply	0 V power pin that is connected to system GND.	4
V0, V1	Power supply	Multi-level power supply for liquid crystal drive.	6
V2, V3		The voltage determined for the liquid crystal cell is applied by	
V4, V5		resistance-division or impedance conversion by operational	
		amplifier. The potential is determined on VDD and the following	
		relations must be observed.	
		$VDD=V0\geqV1\geqV2\geqV3\geqV4\geqV5$	
		$VDD \ge V5 \ge VOUT$	
		$VDD \ge VSS \ge VSS2 \ge VOUT$	
		When the built-in power supply is ON, the following voltages are	
		given to V1 to V4 by command selection.	
		V1 = 1/5 V5 (1/4 V5)	
		V2 = 2/5 V5 2/4 V5	
		V3 = 3/5 V5 2/4 V5	
		$V_4 = 4/5 V_5$ 3/4 V5	
Vs1	0	Supply voltage output pin for oscillating circuit.	1
		Don't connect a load to the outside.	

LCD Power Circuit Pins

Pin name	I/O	Description	Q'ty
CAP1+	0	Boosting condenser positive side connecting pin.	1
		Condenser is connected with the CAP1- pin.	
CAP1-	0	Boosting condenser negative side connecting pin.	1
		Condenser is connected with the CAP1+ pin.	
CAP2+	0	Boosting condenser positive side connecting pin.	1
		Condenser is connected with the CAP2- pin.	
CAP2-	0	A boosting condenser negative side connecting pin.	1
		Condenser is connected with the CAP2+ pin.	
Vout	0	Output pin for boosting. Smoothing condenser is connected	1
		with VDD.	
Vr	I	Voltage adjusting pin. Voltage between VDD and V5 is given by	1
		resistance-division.	
VSS2	I	Boosting power pin. The voltage between VDD and VSS2 is	1
		boosted by a specified multiple.	

System Bus Connecting Pins

Pin name	I/O	Description	Q'ty
D7 (SI)	I	8-bit input data bus which is connected to the 16-bit standard MPU	8
D6 (SCL)		data bus.	
D5 to D0		Pin D7 and pin D6 function as a serial data input and a serial clock	
		input at P/S = "L", respectively.	
		Pin Mode P/S C86 I/F D7 D6 D5 D4 D3-D0 CS A0 WR	
		Serial I/F "L" H or L — SI SCL OPEN OPEN OPEN CS A0 —	
		68I/F 8bit "H" "H" "H" D7 D6 D5 D4 D3-D0 CS A0 E	
		681/F 4bit "H" "H" "L" D7 D6 D5 D4 OPEN CS A0 E	
		801/F 8bit "H" "L" "H" D7 D6 D5 D4 D3-D0 CS A0 WR	
		801/F 4bit "H" "L" "L" D7 D6 D5 D4 OPEN CS A0 WR	
		C86: An MPU selecting pin	
		OPEN: OPEN is allowable, but it is recommend to fix it to one of	
		potentials as a matter of noise-resistance characteristic.	
		—: Either "H" or "L" is allowable, but the potential should be fixed.	
A0		Usually used to distinguish data from a command to which the LSB	1
		of the MPU address bus is connected.	
		"L" : Indicates that D0 to D7 are of a command.	
		"H" : Indicates that D0 to D7 are of data.	
RES		Reset pin for initializing the whole IC. Be sure to input it once when	1
		the power supply is turned on. A reset operation is performed at the	
		"L" level of the RES signal.	
C86	I	MPU selecting pin. Fix it to "H" or "L" depending on the MPU to	1
		be used.	
		"L" : 80 series MPU interface	
		"H" : 68 series MPU interface	4
CS	I	Chip selecting pin. Usually, it inputs a signal that is obtained by	1
		decoding an address signal. Chip selection is enabled at the "L"	
WR		level. <when 80="" is="" mpu="" selected="" series="" the=""> Active "L"</when>	1
		A pin for connecting the WR signal of the 80 series MPU.	'
(E)		The signal on the data bus is latched at the rise of the \overline{WR} signal.	
		When the 68 series MPU is connected> Active "H"	
		Becomes an enable clock input of the 68 series MPU.	
P/S	1	A pin for selecting either serial interface or parallel interface.	1
170		"L" : Serial interface	
		"H" : Parallel interface	
IF		A data bit length selecting pin at parallel interface.	1
		"H" : 8-bit parallel interface	
		"L" : 4-bit parallel interface	
		At $P/S = "L"$, set pins D3 to D0 to VDD or Vss, or OPEN.	
CK		An external clock input pin.	1
	'	When using the internal oscillating circuit, fix it to "H".	'
		When using an external clock input, the internal oscillating circuit	
		must be turned off by command.	
		must be turned on by command.	

Liquid Crystal Drive Circuit Signals Dynamic Drive Pins [SED1240]

Pin name	I/O	Description	Q'ty
COM1 to	0	Common gignel output ping (for characters)	32
COM32	0	Common signal output pins (for characters)	32
COMS1,	0	Common signal output pins (for others than characters)	4
COMS2	0	COMS1, COMS2: Symbol output command output	4
SEG1 to	0	Segment signal output ning (for characters)	80
SEG80	SEG80 O	Segment signal output pins (for characters)	00

Dynamic Drive Pins [SED1241]

Pin name	I/O	Description	Q'ty
COM1 to	0	Common signal output pins (for characters)	16
COM24	0		10
COMS1,	0	Common signal output pins (for others than characters)	4
COMS2	0	CMOS1, CMOS2: Symbol display common output	4
SEG1 to	0	Sogment signal output ning (for characters)	80
SEG80 O	Segment signal output pins (for characters)	00	

Dynamic Drive Pins [SED1242]

Pin name	I/O	Description	Q'ty
COM1 to	0	Common signal output pins (for characters)	16
COM16	0	(Keep COM17 to COM32 unconnected.)	10
COMS1,	0	Common signal output pins (for others than characters)	4
COMS2	0	CMOS1, CMOS2: Symbol display common output	4
SEG1 to	0	Compart simple subsut size (for shorestore)	00
SEG80	0	Segment signal output pins (for characters)	80

Static Drive Pins

Pin name	I/O	Description	Q'ty
COMSA	0	Common signal output pin (for static icons)	2
SEGS	0	Sogment signal output pipe (for static icone)	10
A to J	0	Segment signal output pins (for static icons)	10

Note: For the electrode of the liquid crystal display panel connected to the static drive terminal, it is recommended use the pattern separated from the electrode connected to the dynamic drive terminal. If this pattern is too close, the liquid crystal and electrode may be deteriorated.

DESCRIPTION OF FUNCTIONS

MPU Interfaces

In the SED1240 series, an MPU type, interface bit length and interface method can be selected depending on pins IF, P/S and C86.

Selection of MPU

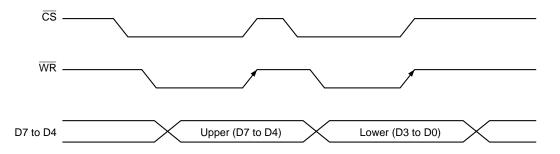
In the SED1240 series, when parallel input is selected (P/S = "H"), pin C86 has an MPU selecting function. When either "H" or "L" is selected as the polarity of pin C86, the 80 series MPU or 68 series MPU can be selected as shown in Table 1.

Selection of an interface bit length (8 bits, 4 bits) is performed by pin IF.

MPU type Pin C86 state	Din C86 state	Polarity of PES function input	MPU connection				
	Polarity of RES function input	A0	WR	CS	D0 to D7		
68 series	High level	Low level active	A0	E	CS	D0 to D7	
80 series	Low level	Low level active	A0	WR	CS	D0 to D7	

Table 1

Selection of interface type


In the SED1240 series, it is possible to select an 8-bit or 4-bit parallel interface or a serial interface that permits a data transfer through a serial input (SI). As the selecting method, set the polarity of pins of P/S and IF to "H" or "L".

а	bl	е	2

Interface	Interface	Selecting pin state						Pi	n state	Э				
type	bit length	P/S	IF	CS	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
Parallel	8 bits	Н	Н	CS	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
Parallel	4 bits	Н	L	CS	A0	WR	D7	D6	D5	D4	O	PEN c	or H oi	r L
Serial	1 bit	L	H or L	CS	A0	H or L	SI	SCL	OPEN or H or L					

Interface with 4-bit MPU

When data is transferred by a 4-bit interface (IF = 0), 8-bit commands, data and addresses are divided into 2 parts for transfer. A timing example of the 80 series MPU is shown below.

Note: For continuous writing, perform it after securing a time exceeding the system cycle time (tcyc).

Serial interface (P/S = "L")

The serial interface consists of an 8-bit shift register and a 3-bit counter, and becomes ready to accept an SI input or SCL input in the chip selected state ($\overline{CS} = "L"$).

Unless any chip is selected, the shift register and the counter are reset to the initial state. (Refresh state)

Data is input in the order of D7, D6, D0 from the serial data input pin (SI) at the rise of the serial clock (SCL). At the rising edge of the 8th serial clock, the data is converted into parallel data.

Whether the serial data input (SI) is display data or a command is identified and judged by A0 input. When A0 = "H", the data becomes display data. When A0 = "L", the data becomes a command. The A0 input is read and identified at the rise of the 8 × nth serial clock (SCL) after chip selection.

EPSON

ED1240 Series Fig. 1 shows a timing chart of the serial interface. In case of the SCL signal, extreme care should be taken about terminal reflection and external noise due to a wiring length. Accordingly, it is recommended to make an operation check. It is also recommended to periodically refresh the each command write state to prevent a malfunction from being caused by noise.

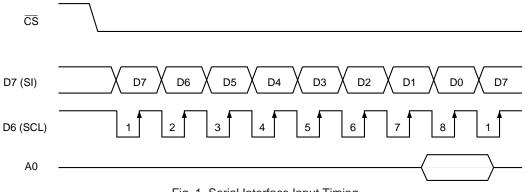


Fig. 1 Serial Interface Input Timing

Identification of data bus signals

The SED1240 series identifies each data bus signal by a combination of A0 and \overline{WR} (E) as shown in Table 3.

Common	68 series	80 series	Function
A0	(E)	WR	Function
1	1	0	Writes into the RAM and symbol register.
0	1	0	Writes into the internal register (commands)

Table 3

Chip select

The SED1240 series has chip select pin \overline{CS} . Only when $\overline{CS} = "L"$, the MPU interface is enabled. In the other states than the chip select state, D0 to D7 and A0, \overline{WR} , SI, and SCL inputs are invalidated. When an serial input interface is selected, the shift register and the counter are reset. However, the \overline{RES} input can be performed regardless of the \overline{CS} state.

Power Circuit

The power circuit built in the SED1240 series is a low power consumption power circuit that generates a voltage required for liquid crystal drive, and consists of a boosting circuit, voltage regulating circuit, and voltage follower.

The power circuit capacity is set for a small-scale liquid crystal panel.

In the case of a liquid crystal panel with a large display capacity, the display quality may be remarkably degraded. In this case, an external power supply is required.

Functional selection is performed by power control commands.

Some parts of the external power supply and the internal power supply can be used together.

	Boosting circuit	Voltage regulat- ing circuit	Voltage follower	External voltage input	Boosting system pin
	0	0	0	Vss2	USE
Note 1	×	0	0	Vout, Vss2	OPEN
Note 2	×	×	0	V5, VSS2	OPEN
Note 3	×	×	×	V1, V2, V3, V4, V5	OPEN

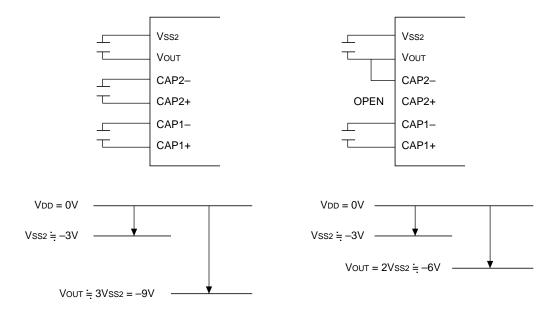
Table 4

Note 1: When the boosting circuit is turned off, set the boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) to OPEN so that liquid crystal drive voltages may be applied to the VOUT pin from the outside.

Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, set the VOUT pin and the boosting system pins to OPEN and connect the V5 pin to give liquid crystal drive voltages from the outside.

Note 3: When all the built-in power supplies are turned off, liquid crystal drive voltages V1, V2, V3, V4, and V5 are supplied from the outside and set the CAP1+, CAP1-, VSS2 and VOUT pins to OPEN.

Boosting circuit


The SED1240 series is provided with a boosting circuit for triple boosting and double boosting for the potential between VDD and VSS2.

For triple boosting, connect a capacitor between CAP1+ and CAP1-, between CAP2+ and CAP2-, and between VDD and VOUT, and the VDD - VSS2 potential is tripleboosted to the negative side and output to the VOUT pin. For double boosting, connect a capacitor between CAP1+ and CAP1- and between VDD and VOUT, set CAP2+ to OPEN, and connect CAP2- to VOUT, and the VDD - VSS2 potential is double-boosted to the negative side and output to the VOUT pin.

Because the boosting circuit uses signals from the oscillator output, the internal oscillating circuit or the external clock must be in operation.

The relation of boosting voltages is shown below.

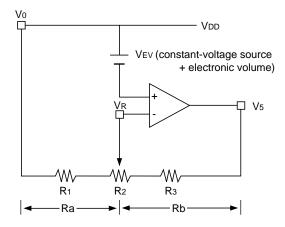
Set the potential between the VDD and VSS2 to ensure that the VOUT does not exceed the permissible operating voltage range of VSS - VOUT (V5) when double or triple boosted.

Potential relation of triple boosting voltages

Potential relation of double boosting voltages

* Set the VSS2 voltage range to ensure that VOUT terminal voltage does not exceed the permissible operating voltage range of VSS - VOUT and absolute maximum rating.

Voltage regulating circuit


The boosting voltage generated at VOUT is output as a liquid crystal drive voltage of V5 through the voltage regulating circuit.

The SED1240 series is provided with a high-precision constant-voltage source, a 32-step electronic volume function, and a V5 voltage regulating resistor. This permits constructing a high-precision voltage regulating

circuit with a small quantity of parts. The voltage regulating circuit outputs VEV and has a temperature gradient of about -0.04%.

As the V5 voltage regulating resistor, a built-in resistor or an external resistor can be selected by command as a matter of configuration.

[When using an external resistor (No use of V5 voltage regulating built-in resistor is set by command.)] The V5 voltage can be obtained from the following expression (1) by adjusting resistors Ra and Rb within the range of | V5 | < | VOUT |.

 $V_5 = (1 + \frac{R_b}{R_a}) \bullet V_{EV}$ (1)

In this case, VEV is determined by the constant-voltage source in the IC and by setting the electronic volume. When the electronic volume value is (00000), VREG \approx 2.0 V, being constant.

For voltage adjustment of V5 output, connect a variable resistor among VR, VDD, and V5. For fine voltage adjustment of V5 output, it is recommended to combine fixed resistors R1 and R3 with variable resistor R2.

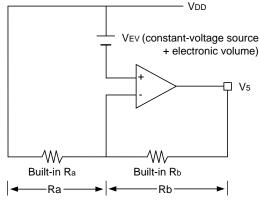
[R1, R2 and R3 setup example]

- $R1 + R2 + R3 = 1.2 M\Omega$ (Determined by the current value I05 flowing between VDD and V5. Supposing I05 $\leq 5 \mu$ A)
- Minimum voltage of V5: -6 V (Determined by liquid crystal characteristic)
- Variable voltage range by R2: -4 to -6 V (Determined by the liquid crystal characteristic)
- When the electronic volume register is set to (0, 0, 0, 0, 0), VEV = 2.0 V (TYP). Accordingly, each resistor value can be calculated by the above conditions and expression ① as follows.

 $R1 = 400 \text{ K}\Omega$

$$R2 = 200 \text{ K}\Omega$$

- $R3 = 600 \text{ K}\Omega$
- Note 1: The input impedance of the VR pin is high, so it is necessary to take a proper measure against noise for short wiring and shielding wiring.


[When using the V5 voltage regulating built-in resistor (Use of V5 voltage regulating built-in resistor is set by command.)] When the V5 voltage regulating built-in resistor and the electronic volume function are used, the liquid crystal supply voltage V5 can be controlled and the density of liquid crystal display can be controlled by commands only without adding any external resistor.

The V5 voltage can be obtained by the following expression (2) by adjusting resistors Ra and Rb within the range of |V5| < |VOUT|.

$$V_5 = (1 + \frac{R_b}{R_a}) \bullet V_{EV}$$
(2)

In this case, VEV is determined by the constant-voltage source within the IC and by setting the electronic volume. When the electronic volume value is (00000), VREG ≈ 2.0 V, being constant.

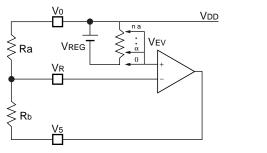
V0

The voltage range of the V5 output can be adjusted by changing the built-in resistor ratio (1 + Rb/Ra) by command. Reference values are shown in Table 5 and Fig. 2.

Table 5	V5 voltage regulating built-in resistor ratio
	set values (reference values)

Com	mand	(4 + Dh/Da)
IR1	IR0	(1 + Rb/Ra)
0	0	2.81
0	1	3.27
1	0	3.72
1	1	4.21

V5 voltage by V5 voltage regulating built-in resistor ratio set value and electronic volume resistor value (reference value) [Fin 2]


Fig. 2

ED1240 Series Voltage regulating circuit using the electronic volume function

When the electronic volume function is used, the liquid crystal drive voltage V5 can be controlled by the command to adjust the density of liquid crystal display. Regarding this method, set 5-bit data in the electronic

volume register, and the liquid crystal drive voltage V5 can take one of 32 states of voltage value. When the electronic volume function is used, the voltage regulating circuit must be turned on by the power control command.

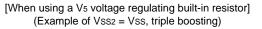
[Constant setup example when using the electronic volume function]

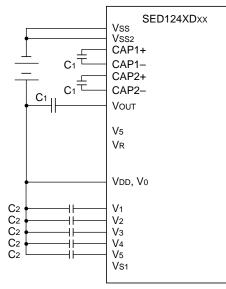
$$V_{5} = (1 + \frac{R_{b}}{R_{a}}) \times V_{EV}$$

However: VEV = VREG – α
 α = VREG / 150

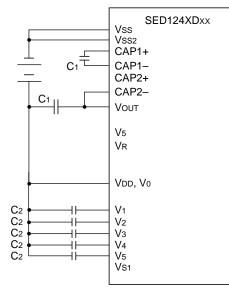
Table 6	3
---------	---

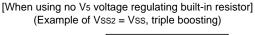

No.	Electronic volume register	α	V5
0	(0, 0, 0, 0, 0)	0	Large
1	(0, 0, 0, 0, 1)	1α	•
2	(0, 0, 0, 1, 0)	2α	•
3	(0, 0, 0, 1, 1)	3α	•
•	•	•	•
•	•	•	•
30	(1, 1, 1, 1, 0)	n-1α	•
31	(1, 1, 1, 1, 1)	nα	Small

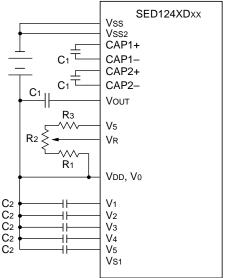

When the electronic volume function is not used, set the electronic volume register to (0,0,0,0,0).

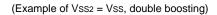

Liquid crystal voltage generating circuit

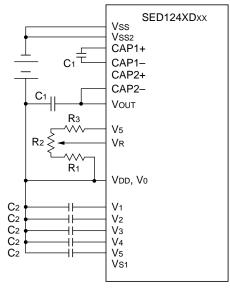
The V5 potential is resistance-divided by the built-in resistor of the IC or external resistors Ra and Rb, generating potentials V1, V2, V3, and V4 required for liquid crystal drive. Furthermore, potentials V1, V2, V3, and V4 are impedance-converted by the voltage follower and supplied to the liquid crystal drive circuit. Regarding the liquid crystal drive voltage, the 1/5 bias or 1/4 bias can be selected by command. For liquid crystal power pins, capacitors C2 for voltage stabilization must be connected to pins V1 to V5 externally.

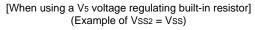

A reference circuit example of each case is shown below.

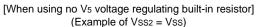


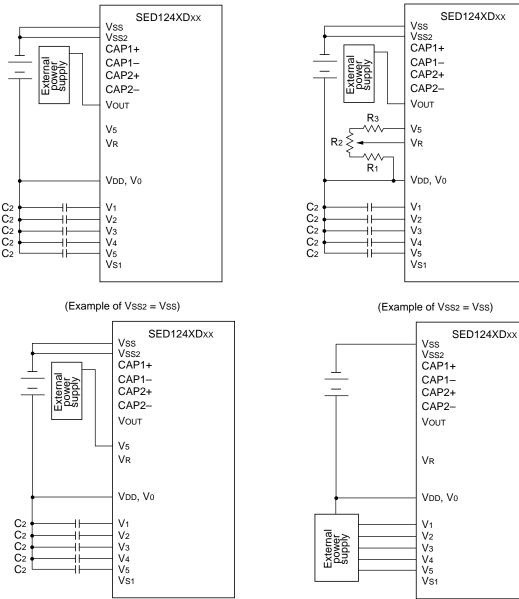





(Example of Vss2 = Vss, double boosting)






Reference set values: C1: 0.47 to 4.7 μ F It is recommended to set optimum values suitable for the panel size in C2: 0.1 to 4.7 μ F is recommended to set optimum values suitable for the panel size in capacitors C1 and C2 while watching the liquid crystal display and drive waveforms.

SED1240 Series

(2) Using only the voltage regulating circuit and the voltage follower.

Reference set values: C1: 0.47 to 4.7 µF It is recommended to set optimum values suitable for the panel size in C2: 0.1 to 4.7 µF capacitors C1 and C2 while watching the liquid crystal display and drive waveforms.

- *1 Because the input impedance of the VR pin is high, use a short wire and a shielding wire.
- *2 Determine C1 and C2 values depending on the size of the LCD panel to be driven. Set proper values that permit stabilizing the liquid crystal drive voltages.
 - [Setting example] Turn on the voltage regulating circuit and the voltage follower and give a voltage to VOUT from the outside.
 - Display a LCD heavy load pattern like horizontal stripes and determine a C2 value so that the liquid crystal drive voltages (V1 to V5) may be stabilized. However, it is necessary to set the same capacity value in C2 in every case.
 - Next, turn on the built-in power supply and determine a C1 value.

High power mode

The power circuit built-in the SED1240 series is a low power consumption type. (when the high power mode is OFF)

Accordingly, in the case of a large load liquid crystal or panel, the display quality may be degraded. In this case, the display quality can be improved by entering HPM = '1' by command. Before determining whether or not to use this mode, it is recommended to make a display check with a real machine.

In case the display quality cannot be improved satisfactorily though the high power mode is set, a liquid crystal drive power must be supplied from the outside.

Low Power Consumption Mode

The SED1240 series is provided with the standby mode/ sleep mode to attain low power consumption in the standby status of the unit.

• Standby mode

The standby mode is turned on and off by the power save command and display off/booster circuit off command. Only static icons can be displayed.

- 1. Liquid crystal display output
- COM1 to COM32, COMS1, COMS2: VDD level SEG1 to SEG80: VDD level SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Can be caused to come on by static drive. Control the static icon display by SEGSA, B, C, D, E, F, G, H, I, J, COMSA by the static icon RAM.
- 2. Contents of DDRAM, CGRAM, and symbol register The written contents are kept in memory regardless of the ON/OFF status of the standby mode.
- 3. The operation mode remains in the status provided before execution of the standby mode. The internal circuit for dynamic display output is stopped.
- 4. Oscillating circuit For static display, the oscillating circuit must be ON.

• Sleep mode

Turn off the power circuit and the oscillating circuit, set '0' in all the data of the static icon register, and execute the power save command.

Then, the sleep mode is set and the current consumption can be reduced to a value close to the static current.

- Liquid crystal display output COM1 to COM32, COMS1, COMS2: VDD level SEG1 to SEG80, SEGS1, 2, 4, 5: VDD level SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Set '0' in all the data of the static icon register and blink ON/ OFF (for static icons).
- 2. Contents of SSRAM, CGRAM and symbol register The written contents can be kept in memory regardless of the ON/OFF status of the sleep mode.
- 3. The operation mode remains in the status provided before execution of the sleep mode. All the internal circuits are stopped.
- Power circuit and oscillating circuit Turn off the built-in power supply and oscillating circuit by the power save command and the power control command.

* Caution: If the oscillating circuit is stopped with the static icon register data and blinking kept off, previous display will remain on the icon. To avoid this, be sure to turn off the data and blinking before stopping the oscillating circuit.

Reset Circuit

When the $\overline{\text{RES}}$ input becomes active, this LSI will be put into the initial setup status. Resetting is performed at the 'L' level of the $\overline{\text{RES}}$ input signal.

- Initial setup status
- 1. Line scroll register
 - $LS1, 0 = \overline{0}$: Scroll amount 0 line
- 2. Line blink control
 - LB4 = 0 : DDRAM line 4 blink OFF
 - LB3 = 0 : DDRAM line 3 blink OFF
 - LB2 = 0 : DDRAM line 2 blink OFF
 - LB1 = 0 : DDRAM line 1 blink OFF
- 3. Vertical double-size display register
 - DD4 = 0 : Line 4 is displayed in standard form.
 - DD3 = 0 : Line 3 is displayed in standard form.
 - DD2 = 0 : Line 2 is displayed in standard form.
 - DD1 = 0 : Line 1 is displayed in standard form.
- 4. Display ON/OFF register
 - C = 0 : Cursor OFF
 - B = 0 : Blink OFF
 - D = 0 : Display OFF
 - RE = 0 : Extended register OFF
- 5. Power save register
 - O = 0 : Oscillating circuit OFF
 - PS = 0 : Power save OFF
- 6. Power control register
 - HPM = 0 : High power mode OFF
 - VC = 0 : Voltage regulating circuit OFF
 - VF = 0 : Voltage follower OFF
 - P = 0 : Boosting circuit OFF
 - IRS = 1 : For built-in resistor
 - BAS = 0 : 1/5 bias
 - IR1,0 = 00 : Rb/Ra = small
- 7. System set register
 - CG = 0 : CGRAM not used
 - CS = 0 : Left shift
 - SS = 0 : Normal display
 - R1, 0 = 0 : Standard ROM + OPTION ROM1
- 8. Electronic volume
- (0,0,0,0,0)
- 9. Static icon ON/OFF control (SEGSA, B, C, D, E, F, G, H, I, J) = (0,0,0,0,0,0,0,0,0): Display OFF
- 10. Static icon blink control

(SEGSA, B, C, D, E, F, G, H, I, J) = (0,0,0,0,0,0,0,0,0,0): Blink OFF

As seen in MPU Interface, the RES pin inputs data at the same timing as MPU resetting and performs initialization concurrently with the MPU. However, if this pin is put into the high impedance for a certain period after the MPU bus and ports are reset, perform a reset input after the input to the SED1240 series is definitively set.

For the reset signal, it is necessary to input '0' level

pulses at least for 10 μ s as described in DC Characteristics. The ordinary operation will be started in 1 μ s or more after the rising edge of the RES signal. When the RES pin becomes active, each register will be cleared and set to the above setup status.

If initialization is not executed by the RES pin when the supply voltage is applied, a clear disable status may appear.

In case the built-in liquid crystal power circuit is not used, the RES input must be active when the external liquid crystal power supply is turned on.

DESCRIPTION OF COMMANDS

Table 7 shows a command table. The SED1240 series identifies each data/command by a combination of A0 and \overline{WR} (E).

An extended command can be selected by the RE bit in the command.

Interpreting and executing commands are performed only at the internal timing. This permits high-speed processing.

Overview of Commands

Command type	Command name	RE	A0	WR
Display control instructions	Cursor Home	0	0	0
	Display ON/OFF Control	0/1	0	0
	Line Blink Control	0	0	0
	Line Scroll Control	1	0	0
	Static Icon Display Control	0	1	0
	Static Icon Display Blink Control	0	1	0
	Vertical Double-size Display Control	1	0	0
Power control	Power Save	0/1	0	0
	Power Control (1)	0	0	0
	Power Control (2)	1	0	0
	Electronic Volume Control	0	1	0
System set	System Set (1)	0	0	0
	System Set (2)	1	0	0
Address control instructions	DDRAM, Symbol Register	0	0	0
	CGRAM	1	0	0
Data input instruction	Data Write	0/1	1	0

Table 7

The execution time of each instruction is determined by the internal processing time of the SED1240 series. Accordingly, for executing an instruction, secure a time exceeding the cycle time (tcyc) and then execute the instruction.

Command						Code	5.4			5.		Function
	RE 0	A0 0	WR 0	D7 0	D6 0	D5 0	D4	D3 *	D2 *	D1 *	D0 *	
(1) Cursor Home/	0	0	0	0								Moves the cursor to the home position. (Set the address to 30H.)
Line Scroll Control	1	0	0	0	0	0	1	*	*	LS1	LSO	Specifies the number of display scrolls in units of line. LS1 LS0 Function 0 0 Scroll amount 0 line 0 1 One-line upward scroll
												1 0 Two-line upward scroll 1 1 Three-line upward scroll
(2) Line Blink/ Vertical Double- size Display Control	0	0	0	0	0	1	0	LB4	LB3	LB2	LB1	 Exerts blink control for each specified line. LB4 = 1 (Blinks the display for line 4 of DDRAM in black-and-white reverse form.) LB4 = 0 (Does not blink the display for line 4 of DDRAM.) LB3 = 1 (Blinks the display for line 3 of DDRAM in black-and-white reverse form.) LB3 = 0 (Does not blink the display for line 3 of DDRAM.) LB2 = 1 (Blinks the display for line 2 of DDRAM in black-and-white-reverse form.) LB2 = 0 (Does not blink the display for line 2 of DDRAM.) LB2 = 0 (Does not blink the display for line 2 of DDRAM.) LB1 = 1 (Blinks the display for line 1 of DDRAM in black-and-white reverse form.) LB1 = 0 (Does not blink the display for line 1 of DDRAM.)
	1	0	0	0	0	1	0	DD4	DD3	DD2	DD1	 Displays the specified DDRAM line in vertical double-size form. DD4 = 1 (Displays the data for line 4 of DDRAM in vertical double-size form.) DD4 = 0 (Displays the data for line 4 of DDRAM in standard form.) DD3 = 1 (Displays the data for line 3 of DDRAM in vertical double-size form.) DD3 = 0 (Displays the data for line 3 of DDRAM in standard form.) DD3 = 0 (Displays the data for line 2 of DDRAM in vertical double-size form.) DD2 = 1 (Displays the data for line 2 of DDRAM in vertical double-size form.) DD2 = 0 (Displays the data for line 2 of DDRAM in vertical double-size form.) DD1 = 1 (Displays the data for line 1 of DDRAM in vertical double-size form.) DD1 = 1 (Displays the data for line 1 of DDRAM in vertical double-size form.)

Table 8 SED1240 Series Command Table

C 1						Code						Function
Command	RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(3) Display ON/OFF/ Extended Register ON/OFF Control	0/1	0	0	0	0	1	1	С	В	RE	D	Sets cursor ON/OFF, cursor blink ON/OFF (B), display ON/OFF (D), use/no-use of extended register (RE) , and electronic volume LBS (RE). $C = 1$ (cursor ON) $C = 0$ (cursor OFF) $B = 1$ (blink ON) $B = 0$ (blink OFF) $D = 1$ (display ON) $D = 0$ (display OFF) $RE = 1$ (extended $RE = 0$ (extended $register ON$) $register OFF$)
(4) Power Save Control	0/1	0	0	0	1	0	0	*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (O). PS = 1 (power save ON) PS = 0 (power save OFF) O = 1 (oscillation ON) $O = 0$ (oscillation OFF)
(5) Power Control	0	0	0	0	1	0	1	НРМ	VC	VF	Ρ	Sets high power mode ON/OFF (HPM), voltage regulating circuit ON/OFF (VC), voltage follower ON/ OFF (VF), and boosting circuit ON/OFF (P). HPM = 1 (high power HPM = 0 (high power mode ON) mode OFF) VC = 1 (voltage VC = 0 (voltage regulating regulating circuit ON) circuit OFF) VF = 1 (voltage VF = 0 (voltage follower ON) follower OFF) P = 1 (boosting P = 0 (boosting circuit ON) circuit OFF)
	1	0	0	0	1	0	1	IRS	BAS	IR1	IRO	Sets V5 voltage regulating resistor selection (IRS), LCD bias set (BAS), and V5 voltage regulating built-in resistor ratio set (IR1, IR0). IRS = 1 (use of built- in resistor) BAS = 1 (1/4 bias) BAS = 0 (1/5 bias) (IR1, IR0) = (11, 10, 01, 00) large to small)
(6) System Set	0	0	0	0	1	1	0	R1	RO	CS	CG	Intege to similarSets ROM option (R1, R0), use/no use of CGRAM(CG), and COM shift direction (CS)CG = 1 (use of CG = 0 (no use of CGRAM)CS = 0 (left shift)InterviewOStandard ROM + OPTION ROM311OStandard ROM + OPTION ROM411 </td
	1	0	0	0	1	1	0	*	*	SS	*	Sets the normal/reverse display (SS) of each segment character. SS = 1 (reverse) SS = 0 (normal)
(7) RAM Address	0	0	0	1				DDRES				Sets the address of DDRAM, static icon RAM or electronic volume RAM.
Set	1	0	0	1			A	DDRES	SS			Sets the address of CGRAM or symbol register RAM.

C 1						Code						Evention
Command	RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(8) RAM	0/1	1	0				DA	TA				Writes data into the DDRAM, CGRAM, symbol
Data												register RAM, static icon RAM or electronic volume
Write												RAM.
												This is determined by the address set instruction
												executed immediately before writing data.
(9) NOP	0/1	0	0	0	0	0	0	0	0	0	0	A command for NON-OPERATION. This also serves
												as a test mode clear command, so it is recommended
												to input it periodically.
(10) Test	0/1	0	0	0	0	0	0	*	*	*	*	A command for IC chip test. Don't use this command.
Mode												

Description of Command Functions

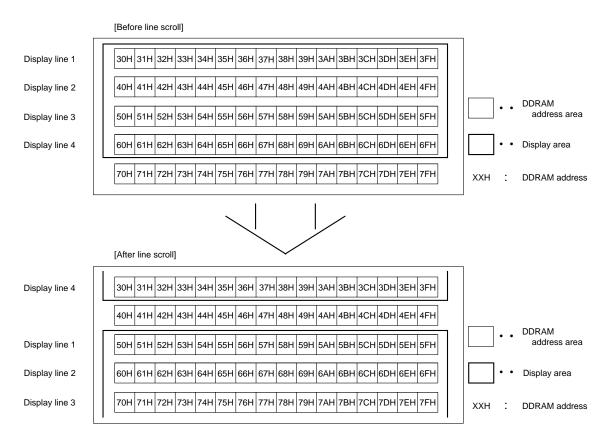
Cursor home

Function: Presets the address counter to 30H. Only when the previous RAM access is made to the area of RE = 0 of the RAM map, the cursor is moved to digit 1 on line 1 if the cursor is displayed.

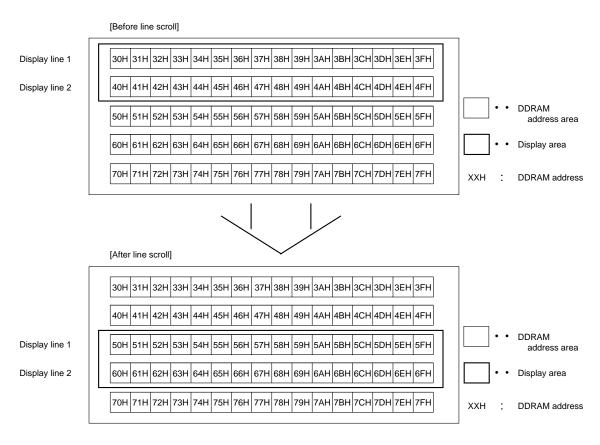
If line scroll is set, it is cleared to the scroll amount = 0 line.

		2,	100	105	D4	DS	$ D_2 $	D1	00
0 0	0	0	0	0	1	*	*	*	*

* : Don't Care


Line scroll control

Function: Controls the display scroll amount for each line.


RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	0	1	*	*	LS1	LS0
				-				* : D	on't	Care

LS1	LS0	Function
0	0	Scroll amount 0 line
0	4	Scrolls 1 line upward.
0	1	(display line 1 from DDRAM line 2)
1	0	Scrolls 2 lines upward.
	0	(display line 1 from DDRAM line 3)
4	4	Scrolls 3 lines upward.
	I	(display line 1 from DDRAM line 4)

• When 2-line scroll has been performed upward at the 4-line display

• When 2-line scroll has been performed upward at the 2-line display [(LS1, LS2) = (1, 0)]

Line blink display control

Function: Displays the specified line in back-and-while reverse form. The specified line corresponds to the address line of the DDRAM. (Not the display line)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	LB4	LB3	LB2	LB1

• Displays the specified line of the DDRAM in blackand-white form by setting LB4 to LB1.

	J	
LB4	= 0	: Displays the data for line 4 of
		the DDRAM in standard form.
		(no blink)
		[DDRAM 60H to 6FH]
LB4	= 1	: Displays the data for line 4 of
		DDRAM in black-and-white
		reverse blink form.
		[DDRAM 60H to 6FH]
LB3	= 0	: Displays the data for line 3 of
		the DDRAM in standard form.
		(no blink)
		[DDRAM 50H to 5FH]

- LB3 = 1 : Displays the data for line 3 of the DDRAM in black-and-white reverse blink form. [DDRAM 50H to 5FH]
- LB2 = 0 : Displays the data for line 2 of the DDRAM in standard form. (no blink) [DDRAM 40H to 4FH]
- LB2 = 1 : Displays the data for line 2 of the DDRAM in black-and-white reverse blink form. [DDRAM 40H to 4FH]
- LB1 = 0 : Displays the data for line 1 of the DDRAM in standard form. (no blink) [DDRAM 30H to 3FH]
- LB1 = 1 : Displays the data for line 1 of the DDRAM in black-and-white reverse blink form. [DDRAM 30H to 3FH]
- fBLINK = 1 to 2Hz.
- Blinking is performed at the same frequency as cursor blink.

If blinking is caused to occur at the same time, the cursor position will be hard to know.

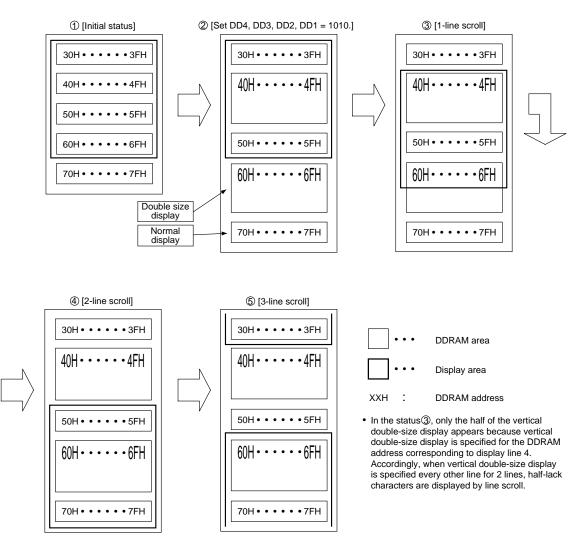
Vertical double-size display control

Function: Displays the specified line in vertical doublesize form.

The specified line corresponds to the address of the DDRAM.

(Not the display line)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	1	0	DD4	DD3	DD2	DD1


• Displays the specified line of the DDRAM in vertical double-size form by setting DD4 to DD1.

DD4	= 0	: Displays the data for line 4 of
		the DDRAM in standard form.
		[DDRAM 60H to 6FH]
DD4	- 1	· Displays the data for line 1 of

DD4 = 1 : Displays the data for line 4 of the DDRAM in vertical doublesize form. [DDRAM 60H to 6FH]

- DD3 = 0 : Displays the data for line 3 of the DDRAM in standard form. [DDRAM 50H to 5FH] DD3 = 1 : Displays the data for line 3 of
 - = 1 : Displays the data for line 3 of the DDRAM in vertical doublesize form.
 [DDRAM 50H to 5FH]
- DD2 = 0 : Displays the data for line 2 of the DDRAM in standard form. [DDRAM 40H to 4FH]
- DD2 = 1 : Displays the data for line 2 of the DDRAM in vertical doublesize form.
- DD1 = 0 [DDRAM 40H to 3FH] : Displays the data for line 1 of the DDRAM in standard form. [DDRAM 30H to 3FH]
- DD1 = 1 : Displays the data for line 1 of the DDRAM in vertical doublesize form. [DDRAM 30H to 3FH]

• Example of vertical double-size display An example of 4-line display will be cited for explanation.

• Example of vertical double-size display (characters)

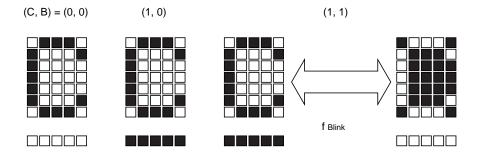
[Standard display]

[Vertical double-size display]

İ	— When the	e under-bar cu	rsor is displave	d this will also	be of double-	size

When the under-bar cursor is displayed, this will also be of double-size.

Display ON/OFF control


Function: Sets both display and cursor ON/OFF, and extended register access.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0/1	0	0	0	0	1	1	С	В	RE	D

- Display ON/OFF is specified by setting D.
 - D = 0: Display ON
 - D : Display ON = 1
- Character blink ON/OFF at the cursor position is specified by setting B. However, when the cursor is OFF, this bit is invalidated.
 - = 0 : Cursor blink OFF В
 - В = 1 : Cursor blink ON
- Cursor ON/OFF is specified by setting C.
 - = 0 : No display of cursor С С
 - : Display of cursor = 1
- · Example of cursor display

- Extended register access is specified by setting RE. : Extended register OFF RE = 0
- RE = 1: Extended register ON • The relation between C/B register and cursor display is shown in the following table.

С	В	Cursor display
0	0	No display (fixed)
0	1	No display (fixed)
1	0	Display of under-bar cursor
1	1	Alternate display of display characters and black-and-white reversed display characters

The cursor display position is indicated by the address counter. Accordingly, when moving the cursor, change the address counter value by the RAM address set command or the auto increment by the RAM data write command.

To display the under-bar cursor when character data (CGRAM) at the cursor position, the position corresponding to the cursor position will be displayed in black-and-white reverse form.

If the address counter is set to the symbol register position at (C, B) = (1, 1), symbols can be caused to blink selectively (every 5 dots because symbols correspond to characters).

Power save

Function: Controls the oscillating circuit and sets and resets the power save mode and the sleep mode.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0/1	0	0	0	1	0	0	*	*	0	PS
								* : D	on't	Care

• Power save mode ON/OFF is specified by setting PS. PS = 0 : Power save OFF (reset)

- PS = 1: Power save ON (set)
- Oscillating circuit ON/OFF is specified by setting O. • 0 = 0: Oscillating circuit OFF
 - (stop of oscillation) 0 : Oscillating circuit ON = 1 (start of oscillation)

Power control (1)

Function: Controls the operation of the built-in power circuit.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	1	HPM	VC	VF	Р
								* : D	on't	Care

- Boosting circuit ON/OFF is specified by setting P. For operating the boosting circuit, the oscillating circuit must be in operation.
 - Р = 0 : Boosting circuit OFF
 - Р = 1 : Boosting circuit ON
- Voltage follower ON/OFF is specified by setting VF. VF = 0 : Voltage follower OFF
 - VF = 1 : Voltage follower ON
- Voltage regulating circuit ON/OFF is specified by setting VC. VC
 - : Voltage regulating circuit OFF = 0
- VC = 1 : Voltage regulating circuit ON. • High power mode ON/OFF is specified by setting HPM.
 - HPM = 0: High power mode OFF
 - HPM = 1 : High power mode ON

Power control (2)

Function: Controls the operation of the built-in power circuit.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	1	IRS	BAS	IR1	IR0
								* : D	on't	Care

The relation of IR0 and option combinations is shown • in the following table.

IR1	IR0	(1 + Rb/Ra)
0	0	Small
0	1	
1	0	↓ ↓
1	1	Large

· Bias selection is performed by setting BAS.

 $= 0^{-1}$: 1/5 bias BAS BAS

- = 1 : 1/4 bias
- Either built-in V5 voltage regulating resistor or external resistor (no use of built-in resistor) is selected by setting IRS.

IRS	= 0	: No use of built-in resistor
IRS	= 1	: Use of built-in resistor

System set (1)

Function: Selects an option ROM and sets the common shift direction and the use/no use of CGRAM.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	R1	R0	CS	CG

• The relation of R1 and R0 combinations is shown in the following figure.

R1	R0	ROM combination
0	0	Standard ROM (160 characters or 154 characters) + option ROM1 (96 characters)
0	1	Standard ROM (160 characters or 154 characters) + option ROM2 (96 characters)
1	0	Standard ROM (160 characters or 154 characters) + option ROM3 (96 characters)
1	1	Standard ROM (160 characters or 154 characters) + option ROM4 (96 characters)

• The COM shift direction is specified by setting CS. CS

$$= 0 : COM left shift(COM1 \rightarrow COM32 \rightarrowCOMS1 \rightarrow COMS2)$$
$$= 1 : COM right shift(COM32 \rightarrow COM1 \rightarrowCOMS1 \rightarrow COMS2)$$

• The use/no use of CGRAM is specified by setting CG. = 0 : No use of CGRAM CG CG : Use of CGRAM = 1

System set (1)

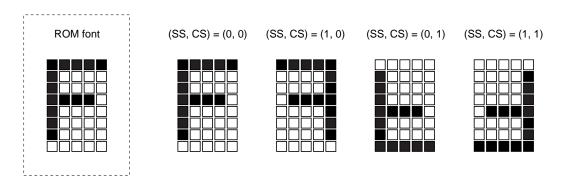
CS

Function: sets the normal/reverse display of SEG characters.

This function operates for each character.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	1	0	*	*	SS	*

* : Don't Care


• The normal/reverse display of SEG is specified by setting SS.

> SS = 0 : Normal display of SEG SS

= 1 : Reverse display of SEG

• For the symbol register RAM output, only the normal display is available.

• Example of display (compared by the same mounting method)

RAM address set (1) [DDRAM, static icon RAM, electronic volume RAM]

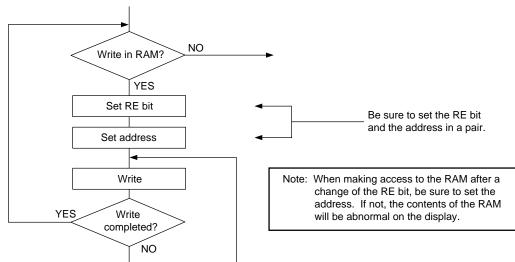
Function: Sets the address for writing data into the DDRAM, static icon RAM (including blink control), and electronic volume RAM in the address counter. When the cursor appears, it is displayed at the display position corresponding to the DDRAM address set by this command. (When the static icon RAM or electronic volume RAM is specified, the cursor disappears on the display.)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1			AD	DRE	ESS		

- ① The settable address is the address 00H to 7FH in D6 to D0.
- (2) When writing data in the RAM, set the address for writing data by this command. Next, when data is written in succession, the address will be automatically incremented. (00H to 7FH \rightarrow 00H)
- (3) $\underline{RE} = 0$, 09H is for testing. Be sure not to use it!

RAM address set (2) [CGRAM, symbol register RAM]

Function: Sets the address for writing data into the CGRAM or symbol register RAM in the address counter.


When the CGRAM address is set, the cursor will disappear on the display. When the symbol register RAM is set, the cursor moves to the corresponding symbol position, causing this symbol to blink selectively.

When the cursor home command is executed immediately after execution of this instruction (before execution of RAM Address Set (1)), the cursor will not be displayed. (Because the address is set at address 30H of RE-1 of the RAM map.)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1			AD	DRE	ESS		

- ① The settable address of the address of 00H to 7FH in D6 to D0.
- (2) When writing data in the RAM, set the address for writing data by this command. Next, if data is written in succession, the address will be automatically incremented. (00H to 7FH \rightarrow 00H)
- $(3) \frac{\text{RE} = 1, 30\text{H} 5\text{FH i8s set to No Use. It is not}}{\text{available.}}$

<Example of Address Set>

[SED1240 RAM map] (4-line 16-digit display)

RE	Low High order order	0	1	2	3	4	5	6	7	8	9	A	в	с	D	Е	F	
	0XH	S	51	S	iΒ		Unu	ised		ΕV	TES	T	•	Unu	used			
	1XH								Unu	ised								Sumbol register
	2XH								Unu	used								Symbol register: COMS1, 2
	зхн							D	DRAI	V line	1							For static icon:
0	4XH		DDRAM line 2											COMSA, SEGSA - J				
	5XH							D	DRAI	V line	3							
	6XH	DDRAM line 4																
	7XH	DDRAM line 5																
	0XH	CGROM(00H) CGROM(01H)																
	1XH	CGROM(02H) CGROM(03H)																
	2XH	CGROM(04H) CGROM(05H)																
1	зхн	Unused																
	4XH								Unu	used								
	5XH								Unu	used								
	6XH							Sy	mbol	regis	ter							
	7XH				Symbol register													

SI Static icon RAM

SIB Static icon blink control RAM

EV Electronic volume RAM

TEST: Testing register. Don't use it.

[SED1240	Series RAM		ah]	(2-	ine i	o-uig	it disp	Jiay)											
RE	Low High order order	0		1	2	3	4	5	6	7	8	9	A	в	с	D	Е	F	
	охн	SI SIB Unused EV TEST Unused Unused Unused Unused Symbol register: COMS1,																	
	1XH	Unused																	
	2XH														COMS1, 2				
	зхн														For static icon:				
0	4XH		DDRAM line 2													COMSA, SEGSA - J			
	5XH																		
	6XH	DDRAM line 4																	
	7XH	DDRAM line 5																	
	охн	CGROM(00H) CGROM(01H)																	
	1XH	CGROM(02H) CGROM(03H)																	
	2XH	CGROM(04H) CGROM(05H)																	
	ЗХН									Unu	used								
1	1 4XH Unused																		
	5XH									Unu	used								
	6XH								Sy	mbol	regis	ter							
	7XH								Sy	mbol	regis	ter							

[SED1240 Series RAM map] (2-line 16-digit display)

SI :Static icon RAM

SIB :Static icon blink control RAM

EV Electronic volume RAM

TEST: Testing register. Don't use it.

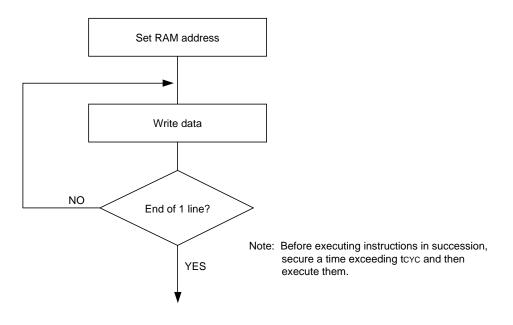
[Display range of each master]

The following shows the display range for the DDRAM area when the vertical double size is unspecified and scroll amount is 0 line:

SED1240 (4 lines by 16 columns)	1st line on display 2nd line on display 3rd line on display 4th line on display	RE = 0 $RE = 0$ $RE = 0$ $RE = 0$	30H to 3FH 40H to 4FH 50H to 5FH 60H to 6FH
SED1241 (3 lines by 16 columns)	1st line on display 2nd line on display 3rd line on display	$\begin{aligned} \mathbf{RE} &= 0 \\ \mathbf{RE} &= 0 \\ \mathbf{RE} &= 0 \end{aligned}$	30H to 3FH 40H to 4FH 50H to 5FH
SED1242 (2 lines by 16 columns)	1st line on display 2nd line on display	$\begin{aligned} \mathbf{RE} &= 0 \\ \mathbf{RE} &= 0 \end{aligned}$	30H to 3FH 40H to 4FH

RAM data write

Function: Writes data in the RAM areas of the DDRAM, CGRAM, symbol register RAM, static icon RAM, and electronic volume RAM. Before this command, be sure to execute the address set command. After that, each time data is written, the


address will be automatically incremented. (Regarding the RE bit, the contents set by the command will be kept in memory.)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0/1	1	0				DA	TA			

- (1) Data is written into the DDRAM, CGRAM, symbol register RAM, static icon RAM, or electronic volume RAM.
- (2) The address counter is automatically incremented by 1, so data can be written in succession. However, the address counter advances from 00H to 7FH to 00H. Accordingly, when writing data into the CGRAM, take care not to write it at the addresses subsequent to 30H.

<Data write example>

An example of writing one line of data into the DDRAM continuously is shown below.

NOP

Function: A no-operation command. No operation is performed functionally. However, because a test mode reset function exists inside, the test mode can be reset if the IC is put into this mode by an effect of noise. It is recommended to add this command at

each breakpoint of the program.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0/1	0	0	0	0	0	0	0	0	0	0

Test mode

Function: An IC test mode set command. Don't use it in any case.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0/1	0	0	0	0	0	0	*	*	*	*

CHARACTER GENERATOR

Character Generator ROM (CGROM)

The SED1240 series is provided with a character generator ROM consisting of up to 544 types of characters. Each character size is of a structure of 5×8 dots.

A character code table of the SED1240 series is shown in CGROM Table X to X. In this case, which of CGROM and CGRAM should be used for the 6 characters of 00H to 05H of the character code is specified by the system set command.

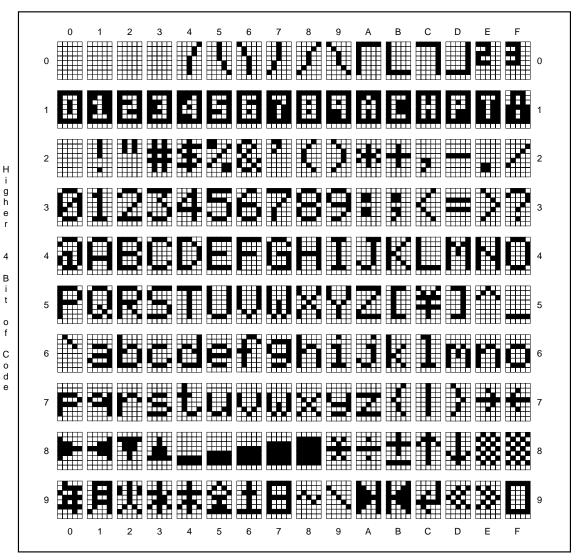
The CGROM of the SED1240 series is a mask ROM and is compatible with the user's own CGROM. Please ask our sales department for further information. Regarding a changed product of CGROM, the product name is defined as follows:

Example: SED1240DAB

Digits corresponding to CGROM pattern change

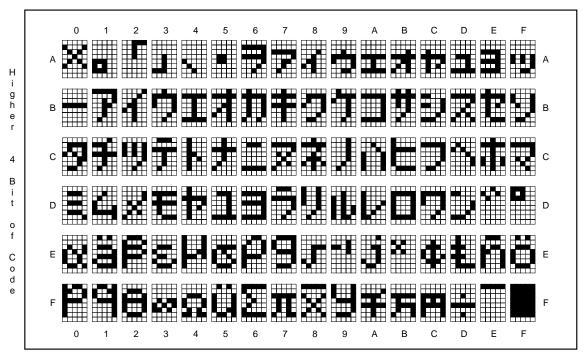
The following shows the standard font specified for SED1240 series:

SED1240DAB, SED1240T0A: JISS1 (Font A) SED1240DBB, SED1240T0B: ASCII (Font B) SED1240DGB, SED1240T0G: JISS2 (Font G)

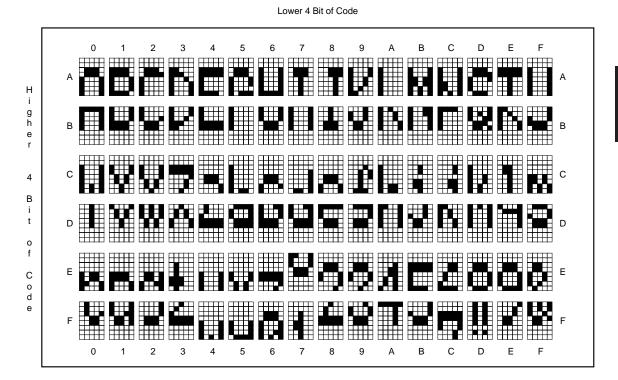

SED1241DAB, SED1241T0A: JISS1 (Font A) SED1241DBB, SED1241T0B: ASCII (Font B) SED1241DGB, SED1241T0G: JISS2 (Font G)

SED1242DAB, SED1242T0A: JISS1 (Font A) SED1242DBB, SED1242T0B: ASCII (Font B) SED1242DGB, SED1242T0G: JISS2 (Font G)

Standard ROM Font


[SED1240D0A CGROM Font]

Lower 4 Bit of Code

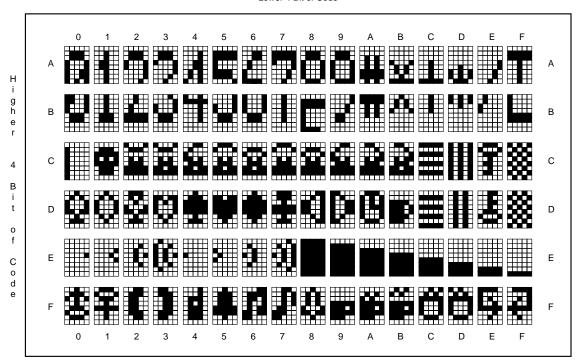

8–38

OPTION ROM1 (when R1, R0 = 0, 0 is selected)



Lower 4 Bit of Code

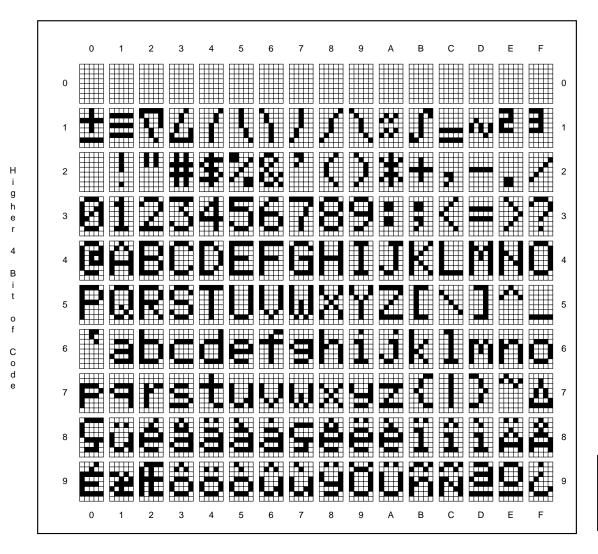
OPTION ROM2 (when R1, R0 = 0, 1 is selected)



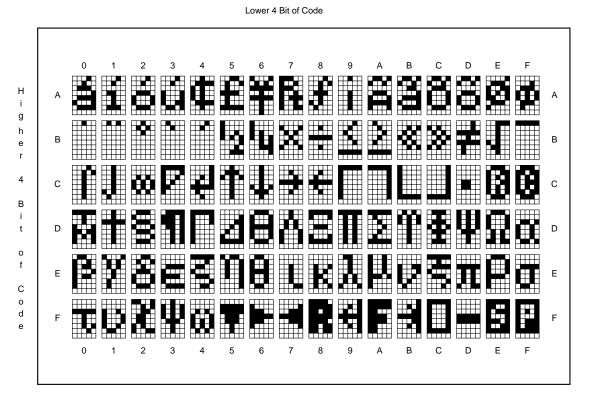
OPTION ROM3 (when R1, R0 = 1, 0 is selected)

Lower 4 Bit of Code

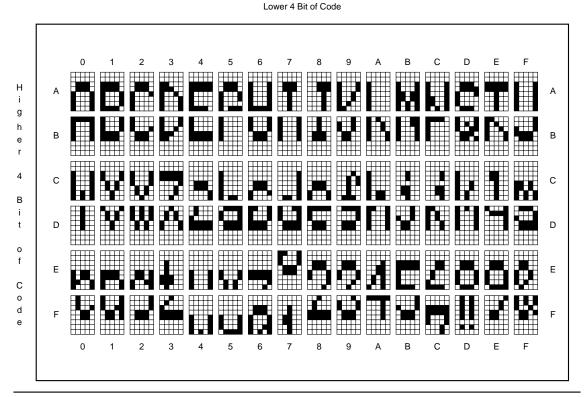
OPTION ROM4 (R1, R0 = 1,1 is selected)


Lower 4 Bit of Code

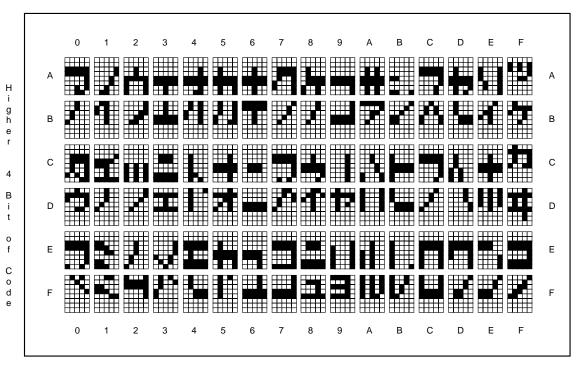
SED1240 Series


Standard ROM Font

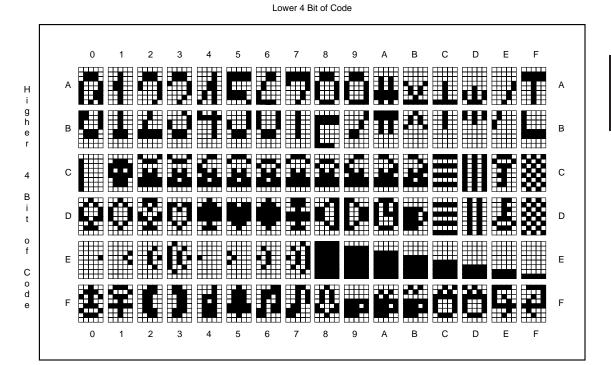
[CGROM Font (ASCII: Font B)]


Lower 4 Bit of Code

OPTION ROM1 (when R1, R0 = 0, 0 is selected)



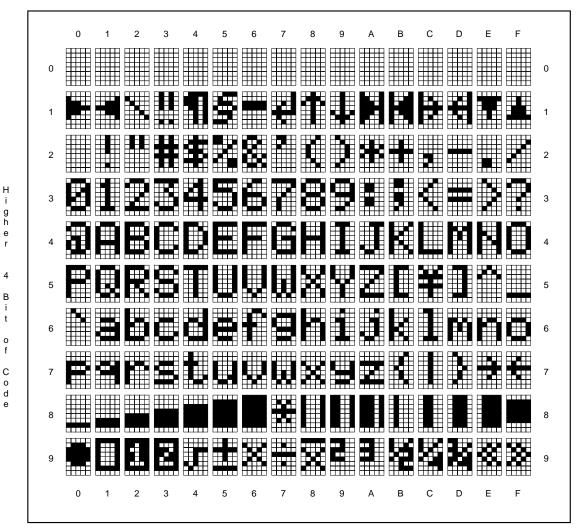
OPTION ROM2 (when R1, R0 = 0, 1 is selected)


EPSON

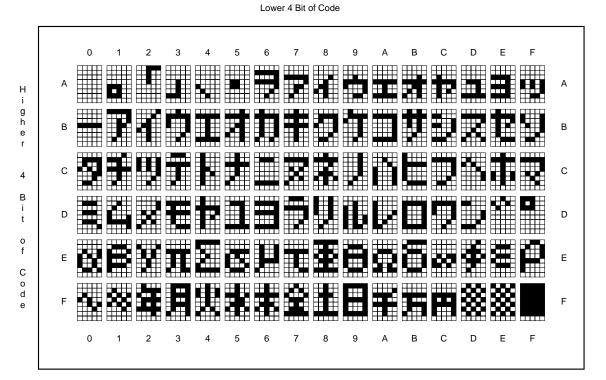
OPTION ROM3 (when R1, R0 = 1, 0 is selected)

Lower 4 Bit of Code

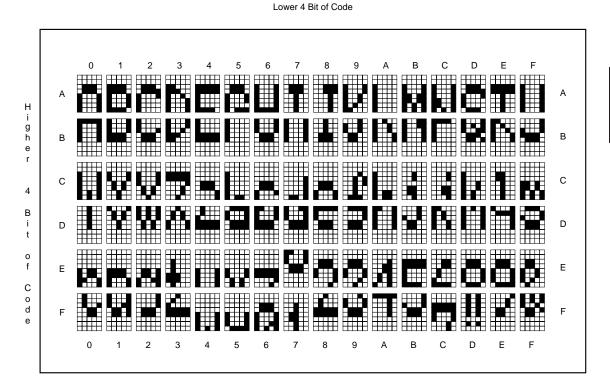
OPTION ROM4 (R1, R0 = 1,1 is selected)

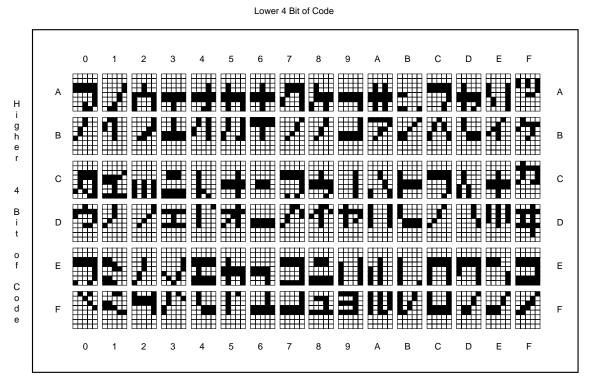


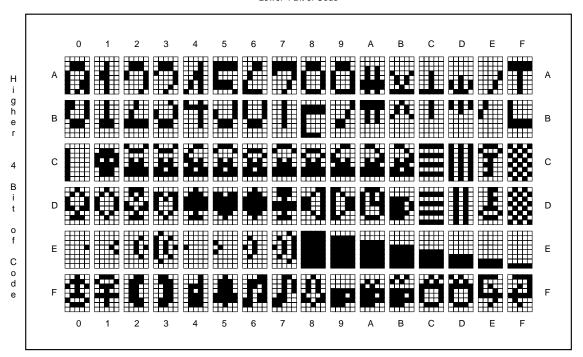
8–43


Standard ROM Font

[CGROM Font (JISS2: Font G)]

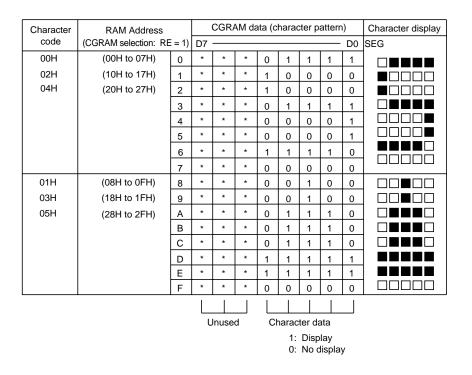

Lower 4 Bit of Code


OPTION ROM1 (when R1, R0 = 0, 0 is selected)


OPTION ROM2 (when R1, R0 = 0, 1 is selected)

OPTION ROM3 (when R1, R0 = 1, 0 is selected)

OPTION ROM4 (R1, R0 = 1,1 is selected)



Lower 4 Bit of Code

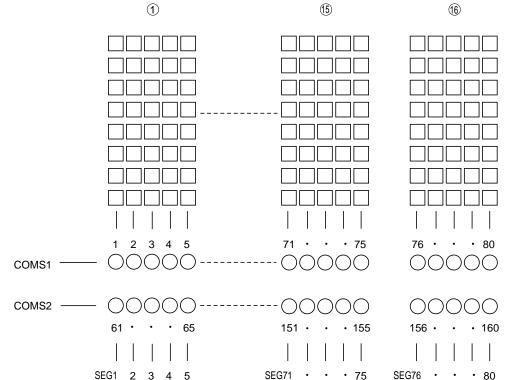
Character Generator RAM (CGRAM)

The SED1240 series is provided with a CGROM that permits the user to program character patterns so as to attain a character display with a high degree of freedom. When using the CGRAM, select Use of CGRAM by the system set command. The CGRAM capacity is 240 bits having a structure of 5×8 dots and optional 6 types of patterns can be registered.

The relation among CGRAM character patterns, CGRAM addresses, and character codes is shown below.

The character size of 5×8 can also be set. In this case, use the RAM of *7H, *FH of the CGRAM address. However, when the under-bar cursor is used, the data of *7H, *FH is displayed in reverse form.

Symbol Register RAM


The SED1240 series is provided with a symbol register RAM that permits setting each symbol so that symbols may be displayed individually on the screen.

The symbol register capacity is 160 bits in both SED1240, SED1241 and SED1242 series and up to 160 symbols can be displayed.

Each symbol can be blink-controlled in units of bit by using D7 and D6.

The relation among symbol register display patterns, RAM address and write data is shown by citing an example.

[SED1240 (4-line 16-digit display), SED1241 (2-line 16-digit display)]

			Bits for symbol								
RAM address [RE = 1]		D7							D0		
	0	BONF	IORH	*	1	2	3	4	5		
60H to 6FH	1	BONF	IORH	*	6	7	8	9	10		
	:					•					
	F	BONF	IORH	*	76	77	78	79	80		
	0	BONF	IORH	*	81	82	83	84	85		
70H to 7FH	1	BONF	IORH	*	86	87	88	89	90		
	:										
	F	BONF	IORH	*	156	157	158	159	160		

Note 1:	When a symbol is 1.5 times as large as other bits, it is recommended to divide it into COMS1 and COMS2 for
	driving.

D7 (BONF)	D6 (IORH)	Function
0	*	No blink
1	0	D4 to D0 blink in black-and-white reverse form.
1	1	The bits of "1" out of D4 to D0 blink.

fBLINK : 1 to 2Hz

Static Icon RAM

The SED1240 series can display static icons in the standby mode.

Each of 10 icons can be set in respect of ON/OFF and

blink by using the pins of COMSA to SEGSA to J. The relation between static icon functions and static icon RAM write data is shown below.

RAM address	SI data								Display				
[RE = 0]	D7	D6	D5	D4	D3	D2	D1	D0	$[\Box \cdot \cdot \cdot \text{ OFF } \blacksquare \cdot \cdot \cdot \text{ ON }]$				
		 	 	 	 	 			SEGSA B C D E				
00H	*	***	*	0	0	0	0	1					
	*	*	; *	1	1	1	1	i 1					
		 							SEGSF G H I J				
01H	*		¦ *	0	¦ 0	0	0	¦ 1					
	*	*	*	1	1	1	1	1					

For static icons, blink ON/OFF control can be exerted independently for each pin.

RAM address	ISB data VS pin								Function
[RE = 0]	D7	D6	D5	D4	D3	D2	D1	D0	1 unction
02H	*	*	*	SEGSA	SEGSB	SEGSC	SEGSD	SEGSE	Blink 1 = ON
03H	*	*	*	SEGSF	SEGSG	SEGSH	SEGSI	SEGSJ	1 = ON 0 = OFF

The following table shows a static icon ON/OFF function and static icon blink control.

[RE = 0] D7 D6 D5 D4 D3 D2 D1 D0 [00H * * * 1 0 1 1 0 02H * * * * 0 1 0 1 0	
	[□··· OFF ■··· ON]
02H * * * 0 1 0 1 0	SEGSA B C D E

fBLINK: 1 to 2Hz

<Cautions for static icon operation>

• Be sure to write static icon data when the oscillating circuit is on. If the data is written when the oscillating circuit is off (Sleep Mode), previous display may remain and instantaneous lighting may occur.

• To perform resetting on the RES terminal except at the time of turning on power, turn off the static icon and blinking in advance, then turn off the oscillating circuit. If resetting is performed when the static icon or blinking is on, instantaneous lighting may be caused by stopping of the oscillating circuit.

Electronic Volume RAM

The SED1240 series is provided with an electronic volume function that permits controlling the liquid crystal drive voltage V5 and adjusting the density of liquid crystal display. The electronic volume function can select one of 32 states of the liquid crystal drive voltage by writing 5-bit data into the electronic volume RAM.

When a V5 voltage regulating built-in resistor is used, this function can attain a wider adjustment if the resistor ratio set command is used together.

The relation between electronic volume set RAM addresses and write data is shown below.

Function	RAMaddress		I	Electr	onic	/olum	edata	a		State	Vev
Function	[RE=0]	D7	D6	D5	D4	D3	D2	D1	D0	Siale	VEV
		*	* *	* *	0	0	0	0	0	0	Vreg-0
		*	*	*	0	0	0	0	1	1	Vreg-α
		*	*	*	0	0	0	1	0	2	Vreg-2α
Electronic volume	08H					•				•	
Volume			_			•			_		
		*	*	*	1	1	1	0	1	29	Vreg-29α
		*	*	*	1	1	1	1	0	30	Vreg-30α
		*	*	*	1	1	1	1	1	31	Vreg–31α
	09H	*	; ; *	*	*	Т4	T2	T1	t0	_	For test

≭ :Unused

α :α=Vreg/150

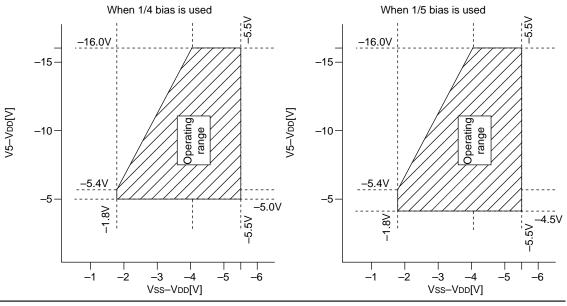
Note :Address"09H"(RE=0)isusedfortest.Don'tuseit.

ABSOLUTE MAXIMUM RATINGS

Item	l	Symbol	Standard value	Unit					
Supply voltage (1)		Vss	-7.0 to +0.3	V					
			-7.0 to +0.3						
Supply voltage (2)	Double boosting	Vss2	-7.0 to +0.3	V					
	Triple boosting		-6.0 to +0.3						
Supply voltage (2)		V5, Vout	-18.0 to +0.3	V					
Supply voltage (3)		V1, V2, V3, V4	V5 to +0.3	V					
Input voltage		Vin	Vss-0.3 to +0.3	V					
Output voltage		Vo	Vss-0.3 to +0.3	V					
Operating temperature	e	Topr	-30 to +85	°C					
Storage temperature	ТСР	T _{str}	-55 to +100	°C					
Storage temperature	Bare chip	l str	-65 to +125	C					
(Vcc) Vdd Vdd									
(GND) Vss [Vss2]									

Notes: 1. All the voltage values are based on VDD = 0 V.

2. The voltages of V1, V2, V3, and V4 must always meet the condition of $VDD \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$ and the condition of $VDD \ge V5 \ge VOUT$, $VDD \ge (VSS, VSS2) \ge VOUT$.


V5

3. If the LSI is used exceeding the absolute maximum ratings, it may result in permanent destruction. It is desirable to use the LSI in the condition of electric characteristics at ordinary operation. If this condition is exceeded, a malfunction may be caused to the LSI, having a bad effect on its reliability.

• Operating voltage range for Vss system (Vss and Vss2) and V5 system (V5)

Set the VSS2 to ensure that the VOUT does not exceed the following operating voltage range:

It applies when an external power supply is used. When using an internal power supply, make sure to set VSS in such that VOUT may not exceed the operating voltage range of V5 system given below.

DC CHARACTERISTICS

 $[Vss = -5.5 V \text{ to } -1.8 V, Ta = -30 \text{ to } 85^{\circ}C \text{ unless otherwise specified}]$

	Item	Symbol		Cond	dition	min	typ	max	Unit	Applicable pin
Supply	Recommended	Vss		_	_	-3.6		-2.4	V	Vss *1
voltage (1)	operation					-5.5		-1.8		
Supply	Recommended	Vss2		-	_	-3.6	_	-2.4	V	VSS2
voltage (2)	operation					-5.5		-1.8		*2 *9
Supply	Recommended	V5	W	When 1/4 bias used		-16.0	_	-5.0	V	V5 *2
voltage (3)	operation		W	When 1/5 bias used		-16.0	_	-4.5	V	
_		V1, V2		_		0.6×V5	_	Vdd	V	V1, V2
		V3, V4		_	_	V5	_	0.4×V5	V	V3, V4
High-level input voltage (1)		VIHC	Vs	s = -2.4	V to -1.8V	0.1×Vss	_	Vdd	V	*3
Low-level input voltage (1)		VILC	1			Vss	_	0.9×Vss	V	
High-level input voltage (2)		VIHC	Vs	s = -5.5	5V to -2.4V	0.2×Vss	_	Vdd	V	
Low-level in	put voltage (2)	VILC				Vss	_	0.8×Vss	V	
Input leak of	urrent	ILI	VIN = VDD or VSS			-1.0	_	1.0	μA	*3
Liquid crys	tal driver ON	Ron	Ta=2	Ta=25°C V5=-7.0V		_	20	40	KΩ	COM,SEG
resistance			ΔV=0	D.1V						*4
Static curre	nt consumption	Iddq		_		_	0.1	5.0	μA	Vdd
Dynamic	Idd	During di	splay	V5=-6\	/ no load	_	_	80	μA	VDD *5
current		At stand	зу	Oscillat	tion ON,	_	_	20	μA	Vdd *6
consumptio	n			power	OFF					
	At sleep			Oscillat	tion OFF,		_	5	μA	Vdd
			power	OFF						
	During access fcyc=200KHZ		OOKHZ	_		500	μA	Vdd *7		
Input pin ca	apacity	Cin	Ta=2	5°C	f=1MHZ	_	5.0	8.0	рF	*3

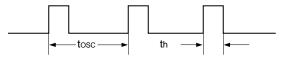
Item	Symbol	Condition	min	typ	max	Unit	Applicable pin
Frame frequency	ffr	Ta=25°C Vss=-3.0V	70	100	130	Hz	*10
External clock frequency	fcк	2-line display (SED1242)	_	28.8	_	KHz	*10 *11
	fск	3-line display (SED1241)	_	41.6		KHz	*10 *11
	fск	4-line display (SED1240)	_	54.4	_	KHz	*10 *11

Item	Symbol	Condition	min	typ	max	Unit	Applicable pin
Minimum reset pulse width	trw	—	10	—		μs	*8
Reset start time	tres	—	—	—	50	ns	*8

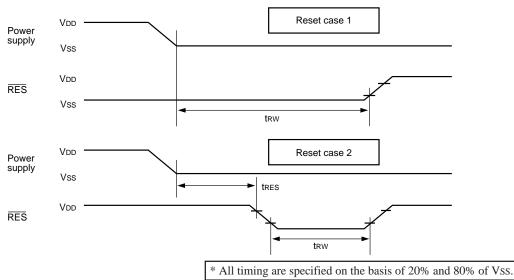
Dynamic system

	Item	Symbol	Condition	min	typ	max	Unit	Applicable pin
	Input voltage	VSS2	Double boosting	-5.5		-1.8	V	VSS2
²			Triple boosting	-5.5		-1.8		
supply	Boosting output	Vout	Double boosting	-11.0		—	V	Vout
er s	voltage		Triple boosting	-16.5		_		
power	Voltage regulating	Vout	—	-16.5		-5.4	V	Vout
	circuit operating voltage							
Built-i	Voltage follower	V5	—	-16.0	_	-4.5	V	V5 *12
B	operating voltage							
	Reference voltage	Vreg	Ta = 25°C -0.05%/°C	-2.06	-2.0	-1.94	V	—

*1: The wide operating voltage range is guaranteed except the case where a sudden voltage change occurs during MPU access.

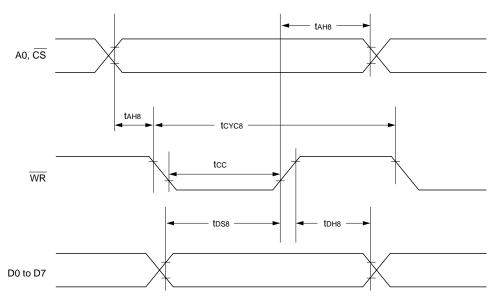

In the low-supply voltage data holding characteristic, it is applied in the sleep mode and MPU access cannot be guaranteed

- *2: At triple boosting, take care about supply voltage VSS2 so that it may not exceed the V5 operating voltage range.
- *3: D0 to D5, D6 (SCL), D7 (SI), A0, RES, CS, WR (E), P/S, IF. C86. CK
- *4: This is a resistance value when a voltage of 0.1 V is applied between output pins SEGn, SEGSn, COMn, and COMSn, and each power pin (V1, V2, V3, V4). This is specified within the range of operating voltage (2).


 $Ron = 0.1 V / \Delta I$

- (Δ I: A current flowing when 0.1 V is applied between the power supply and the output)
- *5: Applies under the following conditions:
 - No access from MPU during all characters 'H' display
 - The built-in circuit and oscillating circuit are operating.
 - CGRAM unused, HPM = 0 specified, Vss = -3.0
- *6: Applies under the following conditions:
 - Standby mode
 - ALl the built-in power circuit off
 - Display off
 - Oscillating circuit on
- *7: Indicates that fcyc is used for writing at all times. The current consumption during access is approximately proportional to the access frequency (fcyc).
- *8: Specifies the RES signal minimum pulse width. To perform resetting, it is necessary to input the pulse having a width of tRW or more. Original, the method for reset case 1 is used, but the method for reset case 2 can also be used if the reset start time condition of tRES or less is satisfied.

- *9: The boosting circuit performs boosting, using voltage between the VDD and VSS2 as source voltage. Check the VSS2 input voltage to ensure that it does not exceed VOUT absolute maximum rating, or the operating voltage range of the VSS system (VSS) and V5 system (V5).
- *10: Frequency fosc of the internal circuit drive oscillating circuit and boosting clock fBST vary according to the type. The following shows the relationship between the oscillating circuit fosc and boosting clock f BST:
 - $fosc = (number of digits) \times (1/duty) \times fFR$
 - $f_{BST} = (1/2) \times (1/number of digits) \times f_{OSC}$
- *11:Enter the following input when performing operations by the external clock, without using the built-in oscillating circuit:
 - Duty = $(th/tosc) \times 100 = 20$ to 30%
 - fosc = 1/tosc



*12: Adjust the V5 voltage regulating circuit within the voltage follower operating voltage range.

AC CHARACTERISTICS

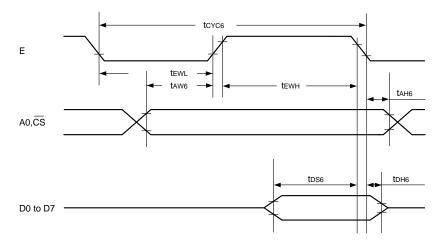
System Bus Write Characteristics I (80 series MPU)

[Vss = -5.5 V to -4.5 V, Ta = -30 to 85° C unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	tAH8	_	30	_	ns
Address setup time		tAW8	—	60	_	ns
System cycle time	WR	tCYC8	—	300	_	ns
Control pulse width (WR)		tCC	—	60	_	ns
Data setup time	D0 to D7	tDS8	—	60	_	ns
Data hold time		tDH8	—	50	—	ns

	[\	/ss = -4.5	V to −2.4 V, Ta = −30 to 85°0	C unless ot	herwise sp	pecified]
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, <u>CS</u>	tah8	-	30	_	ns
Address setup time		tAW8	_	60	_	ns
System cycle time	WR	tCYC8	_	500	_	ns
Control pulse width (WR)		tCC	_	100	-	ns
Data setup time	D0 to D7	tDS8	_	100	-	ns
Data hold time		tDH8	-	50	-	ns

[Vss = -2.4 V to -1.8 V, Ta = -30 to 85° C unless otherwise specified]


, ,		condition		Min.	Max.	Unit			
Address hold time	A0, CS	tah8	_	30	_	ns			
Address setup time		tAW8	_	60	-	ns			
System cycle time	WR	tCYC8	-	1000	-	ns			
Control pulse width (WR)		tcc	_	200	-	ns			
Data setup time	D0 to D7	tDS8	_	200	-	ns			
Data hold time		tdh8	_	50	_	ns			

*1: At the fall and rise time of input signals, set 15 ns or less.

*2: Every timing is specified on 20% and 80% of Vss.

*3: The same timing is not required for A0 and \overline{CS} . Input signals so that A0 and \overline{CS} may satisfy tAW8 and tAH8 respectively.

System Bus Write Characteristics II (68 series MPU)

[Vss = -5.5 V to -4.5 V, Ta = -30 to 85°C unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, CS	tCYC6	-	300	-	ns
Address setup time		tAW6		60	-	ns
Address hold time		tAH6		30	_	ns
Data setup time	D0 to D7	tDS6	-	60	-	ns
Data hold time		tDH6	-	50	-	ns
Enable H pulse width	E	tewh	-	60	-	ns
Enable L pulse width	E	tewl	_	60	-	ns

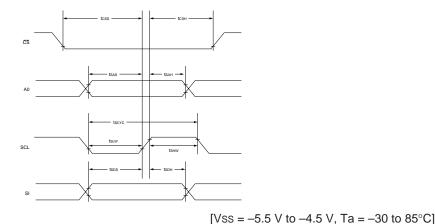
[Vss = -4.5 V to -2.4 V]	Ta = -30 to 8	85°C unless	otherwise	specified]
--------------------------	---------------	-------------	-----------	------------

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, CS	tCYC6	_	500	-	ns
Address setup time		tAW6		60	_	ns
Address hold time		tAH6		30	-	ns
Data setup time	D0 to D7	tDS6	_	100	-	ns
Data hold time		tDH6	_	50	_	ns
Enable H pulse width	E	tewh	—	100	-	ns
Enable L pulse width	E	tewl	-	100	-	ns

[Vss = -2.4 V to -1.8 V, Ta = -30 to 85° C unless otherwise specified]

ltem	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, CS	tCYC6	-	1000	-	ns
Address setup time		tAW6		60	-	ns
Address hold time		tAH6		30	-	ns
Data setup time	D0 to D7	tDS6	_	200	-	ns
Data hold time		tDH6	_	50	-	ns
Enable H pulse width	E	tewh	_	200	—	ns
Enable L pulse width	E	tewl	_	200	_	ns

*1: tcyc6 indicates the cycle of the E signal in the \overline{CS} active state.


It is necessary to secure tCYC6 after \overline{CS} becomes active.

*2: For the rise and fall time of input signals, set 15 ns or less.

*3: Every timing is specified on 20% and 80% of <u>Vss</u>.

*4: The same timing is not required for A0 and \overline{CS} . Input signals so that A0 and \overline{CS} may satisfy tAW6 and tAH6 respectively.

Serial Interface

Measuring Item Signal Symbol Min. Max. Unit condition System clock cycle SCL tSCYC 700 ns _ _ SCL "H" pulse width **t**SHW 250 _ ns _ SCL "L" pulse width 250 tslw _ _ ns A0 Address setup time tsas 50 ns _ _ Address hold time 250 tSAH ns _ _ SI Data setup time tsds _ 50 _ ns Data hold time 50 tSDH _ _ ns CS CS-SCL time tcss 150 ns

_

_

[Vss = -4.5 V to -2.4 V, Ta = -30 to 85°C]

 $[Vss = -2.4 V to -1.8 V. Ta = -30 to 85^{\circ}C]$

500

_

_

ns

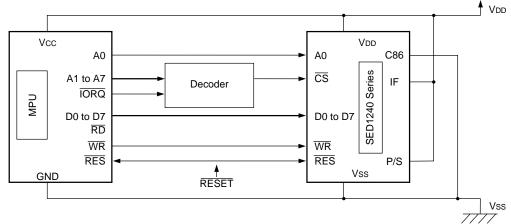
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tSCYC	-	1000	_	ns
SCL "H" pulse width		tSHW	-	300	_	ns
SCL "L" pulse width		tslw	-	300	_	ns
Address setup time	A0	tsas	-	50	_	ns
Address hold time		tSAH	_	300	_	ns
Data setup time	SI	tsds	-	50	-	ns
Data hold time		tSDH	_	50	_	ns
CS-SCL time	CS	tcss	_	150	_	ns
		tCSH	_	700	_	ns

tCSH

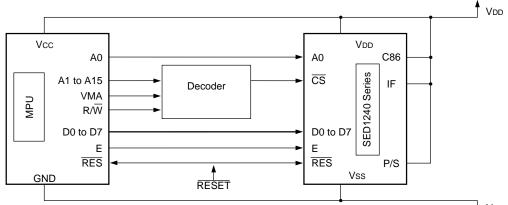
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit	
System clock cycle	SCL	tSCYC	_	2000	-	ns	
SCL "H" pulse width		tSHW	-	300	-	ns	
SCL "L" pulse width		tSLW	_	300	-	ns	
Address setup time	A0	tsas	_	50	-	ns	
Address hold time		tSAH	_	500	-	ns	
Data setup time	SI	tSDS	-	50	-	ns	
Data hold time		tSDH	_	50	-	ns	
CS-SCL time	CS	tcss	_	150	-	ns	
		tCSH	_	900	_	ns	

*1: For the rise and fall time of input signals, set 15 ns or less.

*2: Every timing is specified on 20% and 80% of Vss.

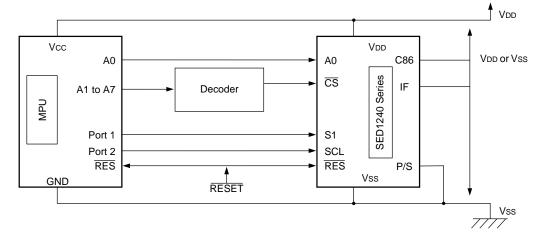

*3: To validate a command or data immediately before the rise of \overline{CS} , tCSH must be satisfied at the latch timing of D0 data. If \overline{CS} is started at another data latch timing, the previous command or data will not be input.

MPU INTERFACE CONNECTION EXAMPLES (FOR REFERENCE)

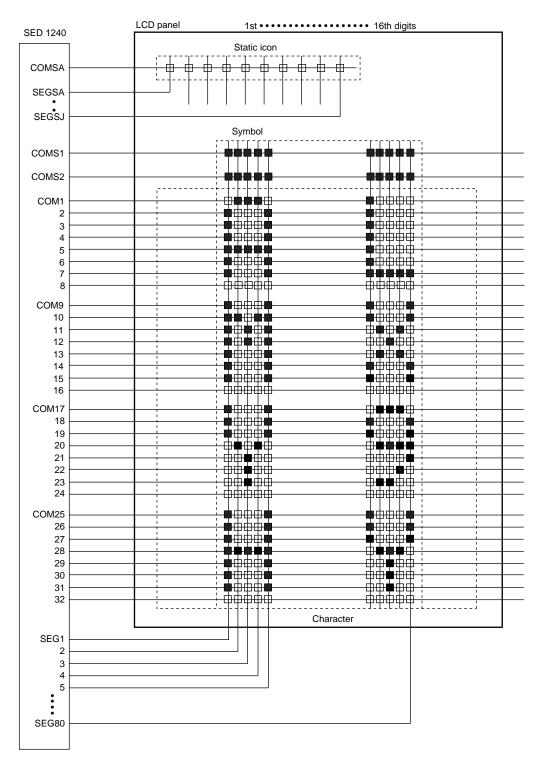

The SED1240 series can be connected to the 80 series MPU or 68 series MPU. Furthermore, it can be operated with less signal lines if the serial interface is used.

When an MPU bus, port, etc. are put into high-impedance for a certain period by RESET, input RESET into this machine after the input to the SED1240 series becomes definitive.

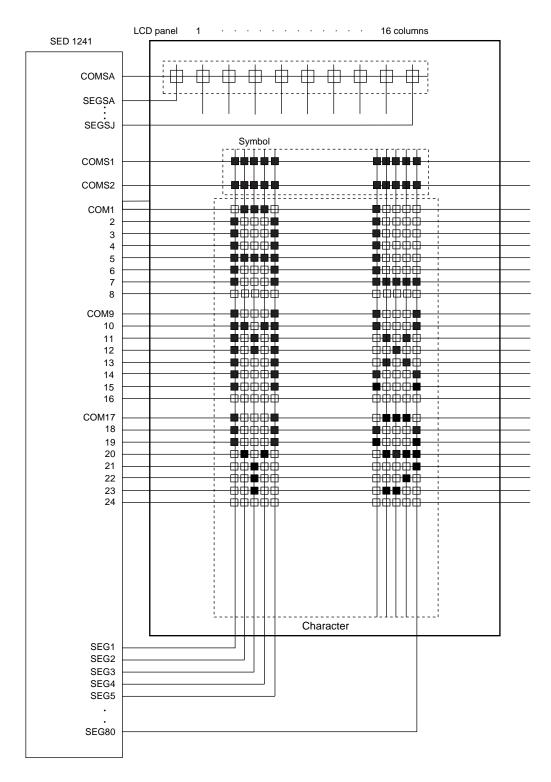
80 Series MPU



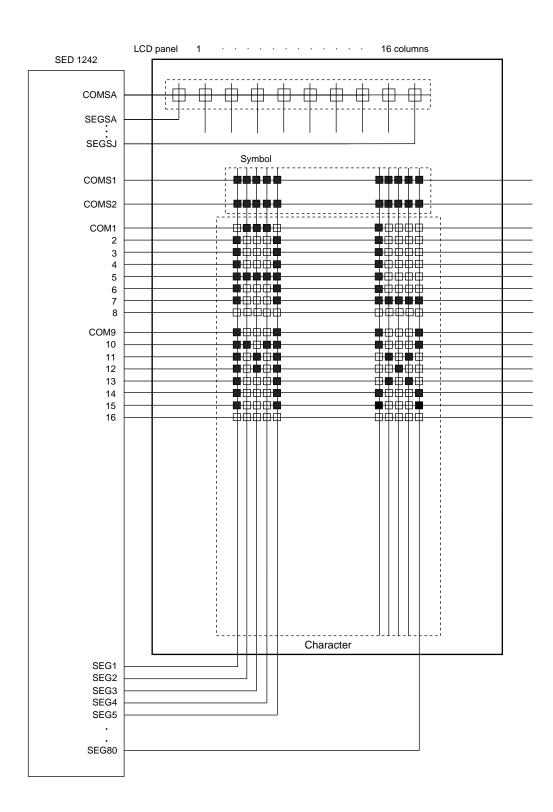
68 Series MPU

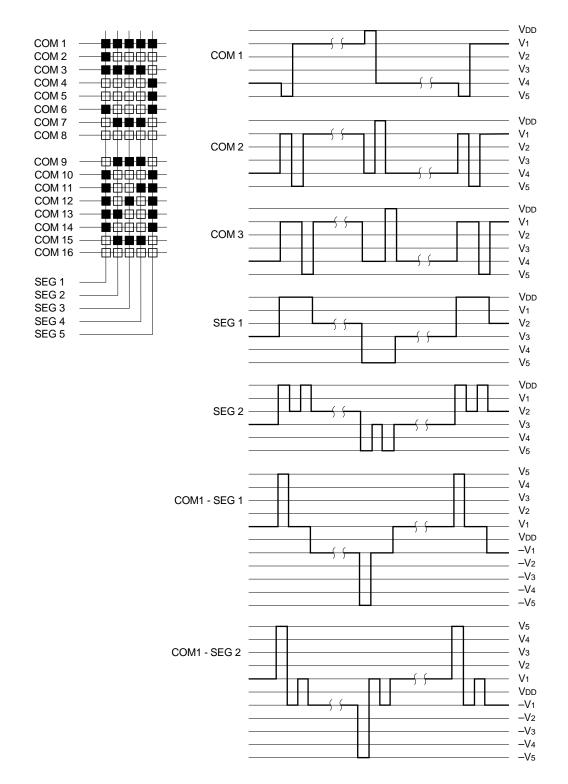


Serial Interface



INTERFACE WITH LCD CELL (FOR REFERENCE)

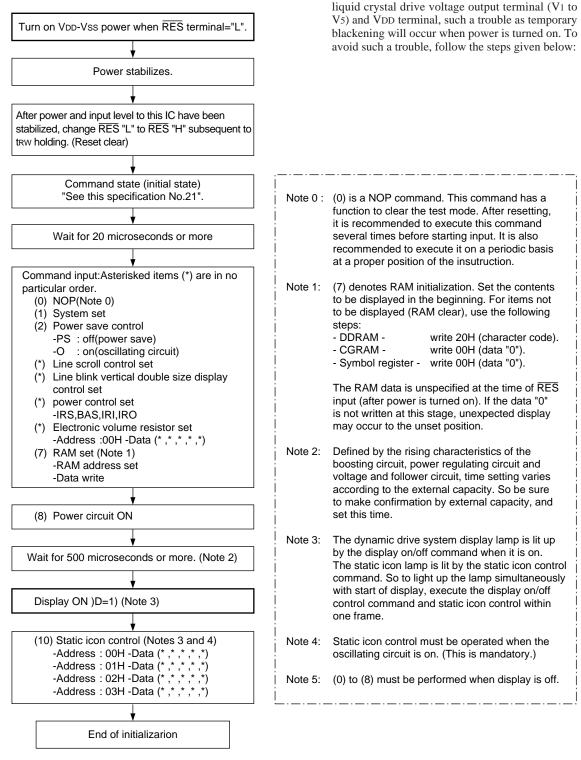

[16 digits \times 4 line 5 \times 8 dots + symbol]


[16 digits \times 3 line 5 \times 8 dots]

[16 digits \times 2 line 5 \times 8 dots]

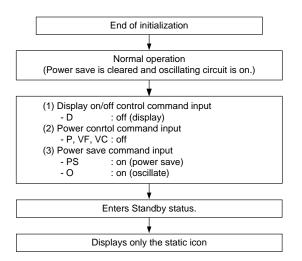
LIQUID CRYSTAL DRIVE WAVEFORM (B WAVEFORM)

indefinite when the power has been turned on. Be

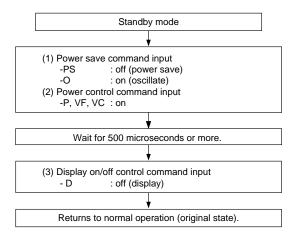

sure to initialize the system. If electric charge remains

in the smoothing capacitor connected between the

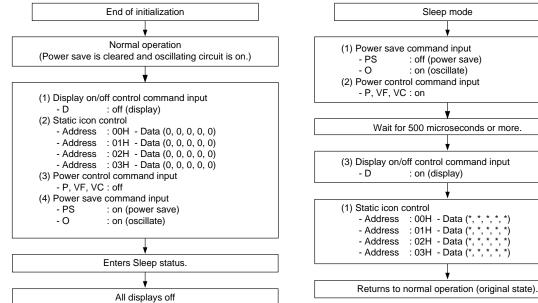
Example of Setting the Instructions (Reference)

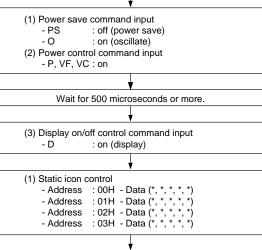

(1) Initialization

This IC has no power-on reset function when power is turned on. Accordingly, the IC internal status is



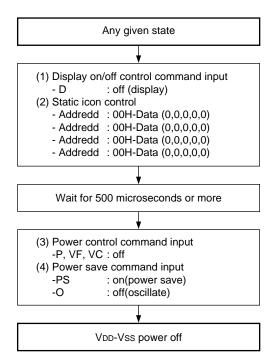
(2-1) Setting the Standby mode


(3-1) Setting the Sleep mode



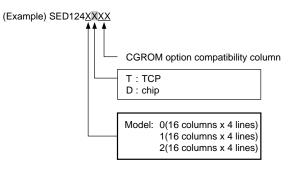
(2-1) Resetting the Standby mode

(3-1) Resetting the Sleep mode



8-64

(4) Power off sequence


Similar to the case of power on sequence, if this IC power is turned off when the built-in power is on, power supply to the built-in liquid crystal drive circuit may continue for a very little time, adversely affecting the liquid crystal panel display quality. To prevent this, strictly follow the power off sequence.

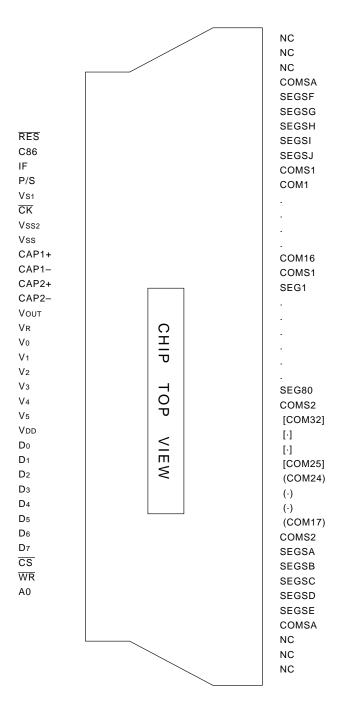
OPTIONS LIST

The SED 1240 series has the following options. Options are available exclusively for users. Please contact our Sales Department.

• The following shows how to define the name of the product compatible with options:

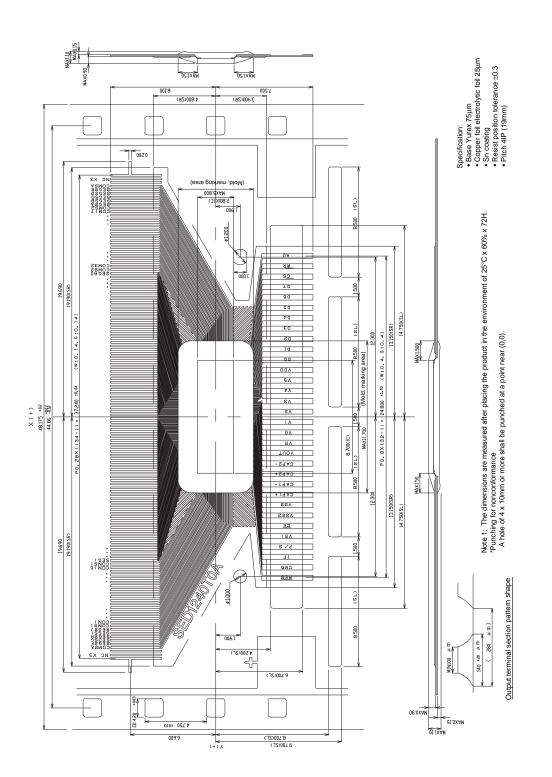
Character Generator ROM (CGROM) Specifications

The SED1240 series is provided with a character generator ROM for up to 544 types of characters. Each character size is of a structure of 5×7 (8) dots.


This CGROM is designed as a masked ROM, and is compatible with the CGROM for exclusive use of the user. For the standard CGROM, see the Character Font Table.

TCP Specifications

The SED1240 series is compatible with the TCP specifications exclusive to the user, in addition to our standard TCP. Please contact our Sales Department for information.


Example of TCP Arrangement

Note: The following does not specify the TCP external view.

REFERENCE

SED1240TXX: COM1 to 16, (COM17 to 24) and [COM25 to 32] are used. SED1241TXX: COM1 to 16 and (COM17 to 24) are used. [COM25 to 32] is for NC. SED1242TXX: COM1 to 16 is used. (COM17 to 24) and [COM25 to 32] are for NC.

REFERENCE

SED1278 LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW

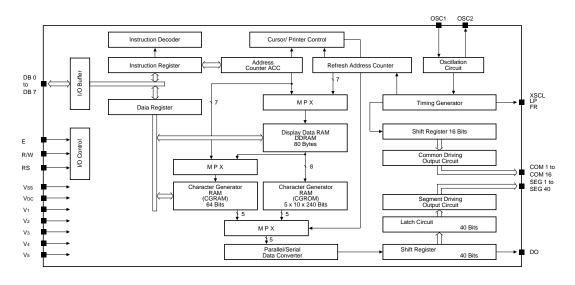
The SED1278 is a dedicated character display controller/ driver which, when used with the SED1181F or the SED1681 segment drivres, is able to display up to 80 characters under 4- or 8-bit MPU control.

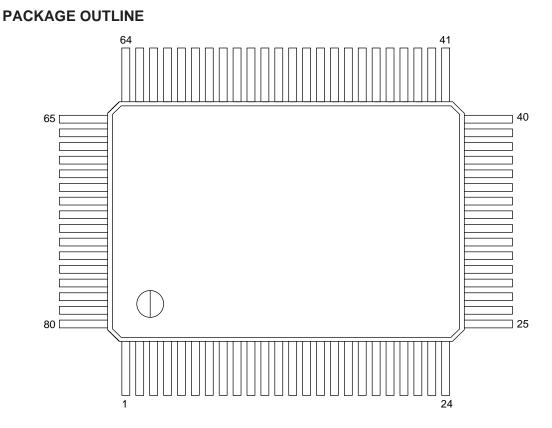
The internal character generator (CG) ROM has an extended 240, 5×10 pixel, character set, plus CGRAM space for an additional eight user definable 5×8 pixel characters. These memory features combined with the rich set of control instructions offer the potential for a highly flexible character display system.

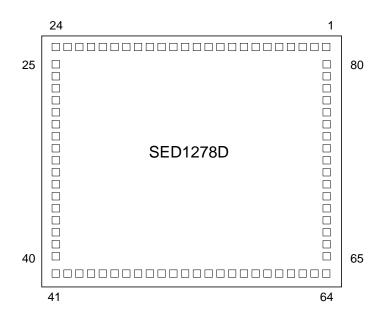
The SED1278 features a guaranteed minimum LCD drive voltage of 3 V making it suitable for use with low voltage LCD panels.

FEATURES

- Interface for 4- and 8-bit MPUs
- Display RAM 80 bytes (80 characters)
- Character generator ROM 240 characters
 5×8 pixel font
- Character genrator RAM 64 bytes
 - 5×8 pixel font, 8 characters.
 - 5×10 pixel font, 4 characters.
- Number of characters used


	Duty	SED1278F	SED1181FLA	No. of characters used
One-line display	1/8, 1/11	1	0	8 columns × 1 line
			6	80 columns × 1 line
Two-line display	1/16	1	0	8 columns × 2 lines
			3	$\begin{array}{c} 40 \text{ columns} \\ \times 2 \text{ lines} \end{array}$


- · Powerful display control instructions
- LCD driver outputs
- 40 segment driver outputs
- 16 common driver outputs
- Low LCD drive voltage 3 V minimum (VDD–V5)
- Dual-frame AC drive
- On-chip power-on reset
- On-chip RC oscillator
- Single 5 V operation
- Chip (SED1278D) and 80-pin QFP (SED1278F) packages


(Compatible with HD 44780 and HD 66780 by Hitachi Limited)

The SED1278 is equivalent to the HD 44780 and HD 66780 by Hitachi Limited. Before use, make sure that there is no problem for practical use. It should be noted that this is not intended to guarantee enforcement of industrial property and other rights, or to grant license for the use of this product.

BLOCK DIAGRAM

PINOUT

F	Pin	F	Pin	F	Pin	F	Pin
Number	Name	Number	Name	Number	Name	Number	Name
1	SEG22	21	SEG2	41	DB2	61	COM15
2	SEG21	22	SEG1	42	DB3	62	COM16
3	SEG20	23	GND	43	DB4	63	SEG40
4	SEG19	24	OSC1	44	DB5	64	SEG39
5	SEG18	25	OSC2	45	DB6	65	SEG38
6	SEG17	26	V1	46	DB7	66	SEG37
7	SEG16	27	V2	47	COM1	67	SEG36
8	SEG15	28	V3	48	COM2	68	SEG35
9	SEG14	29	V4	49	COM3	69	SEG34
10	SEG13	30	V5	50	COM4	70	SEG33
11	SEG12	31	LP	51	COM5	71	SEG32
12	SEG11	32	XSCL	52	COM6	72	SEG31
13	SEG10	33	Vdd	53	COM7	73	SEG30
14	SEG9	34	FR	54	COM8	74	SEG29
15	SEG8	35	DO	55	COM9	75	SEG28
16	SEG7	36	RS	56	COM10	76	SEG27
17	SEG6	37	R/W	57	COM11	77	SEG26
18	SEG5	38	E	58	COM12	78	SEG25
19	SEG4	39	DB0	59	COM13	79	SEG24
20	SEG3	40	DB1	60	COM14	80	SEG23

PIN DESCRIPTION

MPU Interface

RS	Register select signal input. Selects between the data and instruction registers during CPU access. RS = 0: Instruction register access cycle
R/W	RS = 1: Data register access cycle This input selects between SED1278 register read and write cycles. R/W = 0: Register write cycle R/W = 1: Register read cycle
E	Read/write execute signal input.

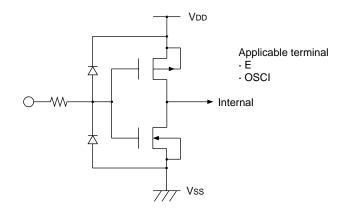
DB0 to DB7 TTL level data input/output lines, for connection to the system MPU data bus.

TABLE 1	The Function of the E Signal
---------	------------------------------

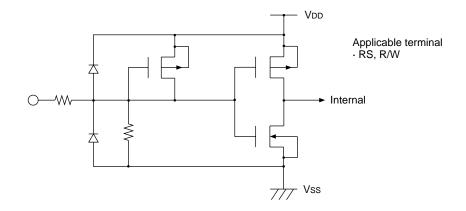
RS	R/W	E	Operation
0	0		Instruction write cycle
0	1	1	Busy flag read cycle Address counter read cycle
1	0		DDRAM or CGRAM data write cycle
1	1	1	DDRAM or CGRAM data read cycle

LCD Panel Interface

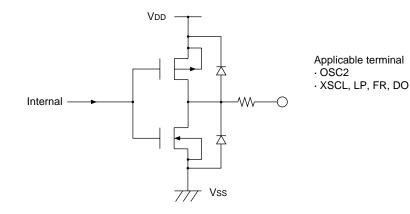
COM1 to COM16	Common driver outputs to the
	LCD panel.
SEG1 to SEG40	Segment driver outputs to the LCD
	panel.
OSC1	If the internal RC oscillator is used
	to generate the LCD drive signals,
	the feedback resistor, Rf, is
	connected to this pin. If an external
	clock source is used, the clock is
	connected to this pin.
OSC2	If the internal RC oscillator is used
	to generate the LCD drive signals,
	the feedback resistor, Rf, is
	connected to this pin. If an external
	clock source is used, this pin is left
	open.


External Segment Driver Interface

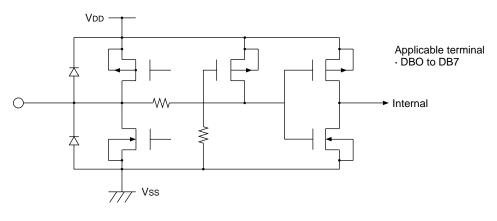
LP	Data latch pulse output for an external
	X-driver.
XSCL	Data shift clock output for an external
	X-driver.
FR	LCD AC-drive waveform for an external
	X-driver.


DO Display data output for an external X-driver.

TERMINAL CONFIGURATION


1. Input terminal configuration (1)

2. Input terminal configuration (2) With pull-up MOS resistor



3. Output terminal configuration

SED1278

4. Input/Output terminal configuration

INSTRUCTION DESCRIPTION

Instruction Summary

la starrette a					Co	de					Description	Cycle Time
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(max.)
Clear Display	0	0	0	0	0	0	0	0	0 0 1		Clears all display data and sets DDRAM address 0 in the address counter.	410 clocks
Return Home	0	0	0	0	0	0	0	0	1	*	Set DDRAM address 0 in the address counter. Also returns any shifted data to home. The contents of DDRAM remain unchanged.	410 clocks
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Specifies the direction in which the cursor moves and whether the display is to be shifted or not, when data is writen to or read from memory	10 clocks
Display ON/OFF	0	0	0	0	0	0	1	D	с	в	Sets all display on/off (D) cursor on/off (C), and character blinking in the cursor position (B).	10 clocks
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/Ē	*	*	Moves the cursor and shifts the display without changing the contents of DDRAM.	10 clocks
System Set	0	0	0	0	1	IF	N	F	*	*	Sets the interface data length (IF), number of characters to be displayed (N), and character font (F).	10 clocks
Set CGRAM Address	0	0	0	1			A	CG			Set CGRAM addresses, followed by transfer of CGRAM data.	10 clocks
Set DDRAM Address	0	0	1		Add					Sets DDRAM address, followed by transfer of DDRAM data.	10 clocks	
Read Busy Flag and Address	0	1	BF		Acc			Reads the busy flag (BF) which indicates internal operation and the contents of the address counter.	0			
Write Data to CG or DDRAM	1	0			Write Data					Writes data to DDRAM or CGRAM.	10 clocks	
Read Data from CG or DDRAM	1	1				Read	l Data				Reads data from DDRAM or CGRAM.	10 clocks

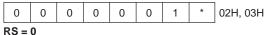
* Don't care

Write Only Instructions

Clear Display

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	0	0	0	0	0	0	1	01H
•	~	•		•	Ŭ			


RS = 0

This instruction

- 1. loads all locations in the display data (DD) RAM with 20H.
- 2. clears the contents of the address counter to 0H.
- 3. sets the display for zero character shift.
- 4. sets the address counter to point to the DDRAM.
- 5. , if the cursor is displayed, moves the cursor to the left most character in the display or, if a two line display is used, moves the cursor to the leftmost character in the top line (line 1).
- 6. sets the address counter to increment on each access of DDRAM or CGRAM.

Cursor Home

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

This instruction

- 1. clears the contents of the address counter to 0H.
- 2. sets the address counter to point to the DDRAM.
- sets the display for zero character shift.
- 4. , if the cursor is displayed, moves the cursor to the left most character in the display or, if a two line display is used, the left most character in the top line (line 1).

Entry Mode Set

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 0 0 0 1 1/D

RS = 0

• The I/D bit selects the way in which the contents of the address counter are modified after every access to DDRAM or CGRAM.

S

04H to 07H

- $I/\overline{D} = 1$: The address counter is incremented.
- $I/\overline{D} = 0$: The address counter is decremented.
- The S bit enables display shift, instead of cursor shift, after each write or read to the DDRAM.
 - S = 1: Display shift enabled.
 - S = 0: Cursor shift enabled.

The direction in which the display is shifted is opposite in sense to that of the cursor. For example if S = 0 and $U\overline{D} = 1$ the cursor would shift one character to the right after an MPU write to DDRAM. However if S = 1 and $U\overline{D} = 1$, the display would shift one character to the left and the cursor would maintain its position on the panel.

The cursor will already be shifted in the direction selected by I/\overline{D} during reads of the DDRAM, irrespective of the value of S. Similarly reading and

writing the CGRAM always shifts the cursor. Note that if a two line display is used both lines will be shifted simultaneously.

Display ON/OFF

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	0	0	0	1	D	С	В	08H to 0FH
	•							

RS = 0

This instruction controls various features of the display.

- The D bit turns the entire display on or off.
 - D = 1: Display on
 - D = 0: Display off
- The C bit turns the cursor on or off.
 - C = 1: Cursor on
 - C = 0: Cursor off
- The B bit enables blinking of the character the cursor coincides with.
 - B = 1: Blinking on
 - B = 0: Blinking off

Cursor/Display Shift

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

	0	0	0	1	S/C	R/L	*	*	10H to 1FH
Б	c	^							

RS = 0

This instruction shifts the display and/or moves the cursor, on character to the left or right, regardless of a DDRAM ready/write.

- The S/C bit selects movement of the cursor or movement of both the cursor and the display.
 - $S/\overline{C} = 1$: Shift both cursor and display
 - $S/\overline{C} = 0$: Shift cursor only
- The R/L bit selects leftward or rightward movement of the display and/or cursor.
 - $R/\overline{L} = 1$: Shift one character right
 - $R/\overline{L} = 0$: Shift one character left

System Set

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	0	1	IF	Ν	F	*	*	20H to 3FH
	-							

RS = 0

This instruction initializes the system, and must be the first instruction executed after power-on.

- The IF bit selects between an 8-bit or a 4-bit MPU interface.
 - IF = 1: 8-bit MPU interface using DB7 to DB0.
- IF = 0: 4-bit MPU interface using DB7 to DB4.
- The N and F bits select the number of display lines and the corresponding duty cycle, as listed in table 2.

N	F	Number of Line	Duty Ratio	Common Output Signal	Non-Selected Common Output Signal
0	0	1 line	1/8	COM1 to COM8	COM9 to COM16
0	1	1 line	1/11	COM1 to COM11	COM12 to COM16
1	*	2 lines	1/16	COM1 to COM16	—

40H to 7FH

TABLE 2 Combinations of Display Lines and Duty Cycle

Set CGRAM Address

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

	0	
0	1	Acr

RS = 0

This instruction

1. loads a new 6-bit address into the address counter.

2. sets the address counter to address CGRAM.

Once "Set CGRAM Address" has been executed, the contents of the address counter will be automatically modified after every access of CGRAM, as determined by the "Entry Mode Set" instruction.

If the "Set CGRAM Address" instruction is issued by the system MPU while the display is enabled, and if either the cursor is on or blink is on, pseudo-cursor or pseudoblink appears. To prevent this, turn both the cursor and display blink off before loading a new CGRAM address. The active width of the address counter, when it is addressing CGRAM, is 6-bits so the counter will wrap around to 00H from 3FH if more than 64 bytes of data are written to CGRAM.

Set DDRAM Address

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

1	Add	
RS =	0 80H to CFH 1	line
	80H to A7H line	1 2 line
	C0H to E7H line	2 2 line

This instruction

1. loads a new 7-bit address into the address counter.

2. sets the address counter to point to the DDRAM. Once the "Set DDRAM Address" instruction has been executed, the contents of the address counter will be automatically modified after each access of DDRAM, as

selected by the "Entry Mode Set" instruction. The SED1278 has only 80 DDRAM locations. The valid address spaces for various display configurations are listed in table 3.

TABLE 3 Valid CGRAM Address Ranges

			-
Number	of Lines	Characters	ADR
1-line		80	00H to 4FH
2-line	1st line	40	00H to 27H
2-1116	2nd line	40	40H to 67H

Write Data

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

DATA

RS = 1

This instruction writes the data in DB7 to DB0 into either the CGRAM or the DDRAM. The RAM space (CG or DD), and the address in that space, that is accessed depends on whether a "Set CGRAM Address" or a "Set DDRAM Address" instruction was last executed, and on the parameters of that instruction.

The contents of the address counter will be automatically modified after each "Write Data", as determined by "Entry Mode Set". When data is written to the CGRAM, the DB7, DB6 and DB5 bits are not displayed directly as characters.

Read Only Instructions

Read Busy Flag/Address Counter

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

BF Acc

RS = 1

Reading the instruction register yields the current value of the address counter and the busy flag. This instruction must be executed prior to any other instructions.

 Acc, the address counter value, will point to a location in either CGRAM or DDRAM, depending on the type of "Set RAM Address" instruction last sent. In "Busy Flag Check" immediately after executing

"RAM Address Set" instruction, a valid address counter value can be read 5 clock cycles after the busy flag (BF) goes low.

In "Busy Flag Check" immediately after executing "Write Data" instruction, a valid address counter value can be ready as soon as BF goes low.

The BF bit shows the status of the busy flag.

- BF = 1: SED1278 busy.
- BF = 0: SED1278 ready for next instruction.

Read Data

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

DATA

RS = 1

This instruction reads data from either CGRAM or DDRAM, depending on the type of "Set RAM Address" instructions last sent. The address in that space depends on the "Set RAM Address" instructions parameters. Immediately before executing "Read Data", "Set CGRAM Address" or "Set DDRAM Address" must be executed.

The contents of the address counter are modified after each "Read Data", as determined by "Entry Mode Set". Display shift is not executed, independently of "Entry Mode Set".

SPECIFICATIONS

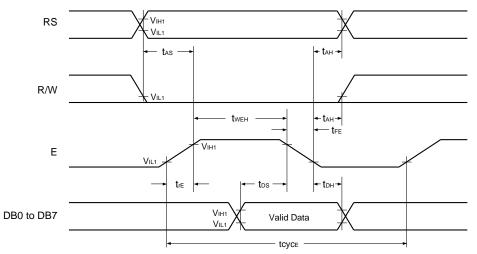
Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage (1)	Vdd	-3 to +7.0	V
Supply voltage (2)*	V1 to V5	-0.3 to VDD+0.3	V
Input voltage	Vin	-0.3 to VDD+0.3	V
Operating temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	-65 to +150	°C
Soldering temperature × time**	Tsol	260, 10	°C, s
Power dissipation	PD	300	mW

Notes: 1. VDD > V1 > V2 > V3 > V4 > V5 > VSS

2. A flat package product can become less resistant to moisture if exposed to extreme temperatures. When mounting this package on a printed circuit board, use a soldering technique which avoids excessive thermal loading of the package resin.

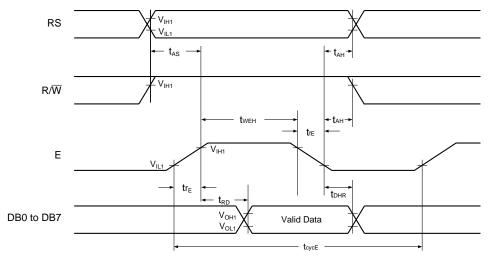
3. All voltages assume Vss = 0 V.


DC Characteristics

			(Vdi	0 = 5.0 V	± 10%, Vs	s = 0 V,	$Ta = -20 \text{ to } +75^{\circ}C)$	
Parameter	Symbol Condition	Rating			Unit	Applicable Pins		
Falalletei	Symbol Condition		min	typ	max	Unit	Applicable FIIIS	
"H" level input voltage (1) (TTL)	VIH1		2.0	_	Vdd	V	DB0 to DB7, RS,	
"L" level input voltage (1) (TTL)	VIL1		Vss	—	0.8	V	R/W, E	
"H" level input voltage (2) (CMOS)	VIH2		VDD-1.0	_	Vdd	V	OSC1	
"L" level input voltage (2) (CMOS)	VIL2		Vss	_	1.0	V	0301	
"H" level output voltage (1) (TTL)	Voh1	–Iон = 0.205 mA	2.4	—	—	V	DB0 to DB7	
"L" level output voltage (1) (TTL)	Vol1	IoL = 1.6 mA	_	_	0.4	V		
"H" level output voltage (2) (CMOS)	Voh2	—Іон = 0.04 mA	0.9Vdd	_	-	V		
"L" level output voltage (2) (CMOS)	Vol2	IoL = 0.04 mA	_	_	0.1Vdd	V	XSCL, LP, DO	
Driver-on resistor (COM)	Rсом	VCOM-Vn = 0.5 V	—	2	10	kΩ	COM1 to COM16	
Driver-on resistor (SEG)	Rseg	VSEG-Vn = 0.5 V	—	2.5	10	kΩ	SEG1 to SEG40	
I/O leakage current	١L	VIN = 0 to VDD	—	_	1	μΑ		
Pull-up MOS current	–IP	Vdd = 5 V	50	125	250	μA	DB0 to CB7, RS, R/W	
Supply current	Юр	Rf oscillation, from external clock VDD = 5 V, fosc = fcp = 270 kHz	_	0.5	0.8	mA	Vdd	

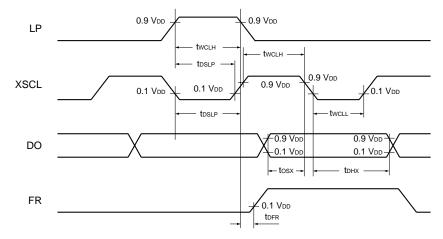
 $(V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0 \text{ V}, \text{ Ta} = -20 \text{ to } +75^{\circ}\text{C})$

AC Characteristics


• MPU write cycle timing (write to SED1278)

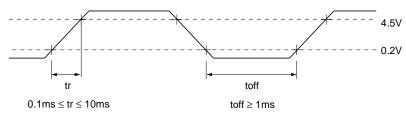
(VDD = 5.0 V \pm 10%, VSS = 0 V, Ta = -20 to 70°C)

Parameter	Symbol Condition	Condition	Rating		Unit
Farameter		min	max		
Enable cycle time	tcycE		500	_	ns
Enable "H" level pulsewidth	tweн		220	—	ns
Enable rise/fall time	trE, trE		—	25	ns
RS, R/W setup time	tas		40	—	ns
RS, R/\overline{W} address hold time	tан		10	—	ns
Data setup time	tos		60	—	ns
Write data hold time	tон		10		ns


• MPU read cycle timing (read from SED1278)

Parameter	Symbol	Condition	Rat	Unit		
Farameter	Symbol		min	max	onin	
Enable cycle time	t _{cycE}		500	—	ns	
Enable "H" level pulsewidth	tweн		220	—	ns	
Enable rise/fall time	tre, tre		—	25	ns	
RS, R/W setup time	tas		40	_	ns	
RS, R/\overline{W} address hold time	tан		10	_	ns	
Read data setup time	t RD	CL = 100 pF	—	120	ns	
Read data hold time	t DHR		20		ns	

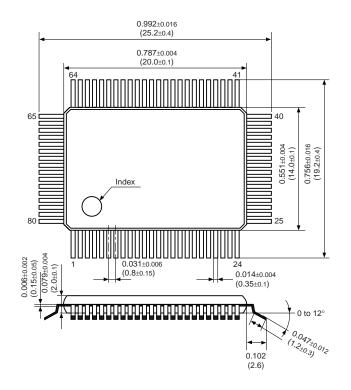
 $(VDD = 5.0 V \pm 10\%, VSS = 0 V, Ta = -20 to 75^{\circ}C)$


• External segment driver signal timing

 $(V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = 0 \text{ V}, \text{ Ta} = -20 \text{ to } 70^{\circ}\text{C})$

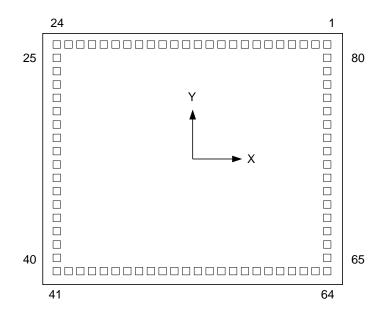
Parameter	Symbol	Condition	Rating		Unit
Falameter	Symbol	Condition	min	max	Onit
Clock pulsewidth: High level	tWCLH		0.8/2fosc	—	ns
Clock pulsewidth: Low level	tWCLL		0.8/2fosc	—	ns
Latch pulse setup time	tDSLP		0.7/2fosc	—	ns
Data setup time	tosx		0.7/2fosc	—	ns
Data hold time	t DHX		0.7/2fosc	—	ns
FR delay	tDFR		-1000	1000	ns

· Power-on reset timing


(Ta = -20 to 75 deg. C)

LCD Drive Voltages

Pin	Duty 1/8 or 1/11	Duty 1/16
V1	3/4 (Vdd - V5)	4/5 (Vdd - V5)
V2	2/4 (Vdd - V5)	3/5 (Vdd - V5)
V3	2/4 (Vdd - V5)	2/5 (VDD – V5)
V4	1/4 (Vdd - V5)	1/5 (Vdd - V5)
V5	V5	V5


Mechanical Specifications

SED1278F Package Dimensions

SED1278D Package Dimensions

$4.50 \text{ mm} \times 3.67 \text{ mm}$
400 µm
$109 \mu\text{m} \times 109 \mu\text{m}$
182 µm

Pa	ad			Pa	ad		
Number	Name	Χ (μm)	Υ (μm)	Number	Name	Χ (μm)	Υ (μm)
1	SEG22	2087	1671	41	DB2	-2087	-1671
2	SEG21	1905	1671	42	DB3	-1905	-1671
3	SEG20	1723	1671	43	DB4	-1723	-1671
4	SEG19	1541	1671	44	DB5	-1541	-1671
5	SEG18	1359	1671	45	DB6	-1359	-1671
6	SEG17	1177	1671	46	DB7	-1177	-1671
7	SEG16	995	1671	47	COM1	-995	-1671
8	SEG15	814	1671	48	COM2	-814	-1671
9	SEG14	633	1671	49	СОМЗ	-633	-1671
10	SEG13	452	1671	50	COM4	-452	-1671
11	SEG12	272	1671	51	COM5	-272	-1671
12	SEG11	91	1671	52	COM6	-91	-1671
13	SEG10	-91	1671	53	COM7	91	-1671
14	SEG9	-272	1671	54	COM8	272	-1671
15	SEG8	-452	1671	55	COM9	452	-1671
16	SEG7	-633	1671	56	COM10	633	-1671
17	SEG6	-814	1671	57	COM11	814	-1671
18	SEG5	-995	1671	58	COM12	995	-1671
19	SEG4	-1177	1671	59	COM13	1177	-1671
20	SEG3	-1359	1671	60	COM14	1359	-1671
21	SEG2	-1541	1671	61	COM15	1541	-1671
22	SEG1	-1723	1671	62	COM16	1723	-1671
23	GND	-1905	1671	63	SEG40	1905	-1671
24	OSC1	-2087	1671	64	SEG39	2087	-1671
25	OSC2	-2087	1365	65	SEG38	2087	-1365
26	V1	-2087	1183	66	SEG37	2087	-1183
27	V2	-2087	1001	67	SEG36	2087	-1001
28	V3	-2087	819	68	SEG35	2087	-819
29	V4	-2087	637	69	SEG34	2087	-637
30	V5	-2087	455	70	SEG33	2087	-455
31	LP	-2087	273	71	SEG32	2087	-273
32	XSCL	-2087	91	72	SEG31	2087	-91
33	Vdd	-2087	-91	73	SEG30	2087	91
34	FR	-2087	-273	74	SEG29	2087	273
35	DO	-2087	-455	75	SEG28	2087	455
36	RS	-2087	-637	76	SEG27	2087	637
37	R/W	-2087	-819	77	SEG26	2087	819
38	E	-2087	-1001	78	SEG25	2087	1001
39	DB0	-2087	-1183	79	SEG24	2087	1183
40	DB1	-2087	-1365	80	SEG23	2087	1365

OPERATION

The Busy Flag

The SED1278 takes between 10 and 410 clock cycles to execute instructions. During that period additional instructions should not be issued. The device is provided with a busy flag to let the user check the internal state of the chip. BF should be 0 before another instruction is issued.

If the busy flag is not checked between instructions the user must arrange for a guaranteed delay of more than the instruction execution time, before issuing the next instruction.

4-Bit MPU Interface

If a "System Set" instruction is issued with bit 4 set to 0, then the SED1278 will operate with a 4-bit MPU data bus interface.

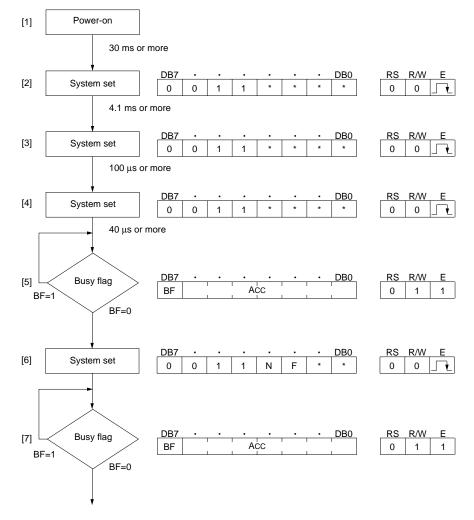
If a 4-bit interface is used, the 8-bit instructions are written nibble by nibble; the high-order nibble being written first, followed by the low-order nibble. It is not necessary to check the busy flag between writing separate nibbles of individual instructions.

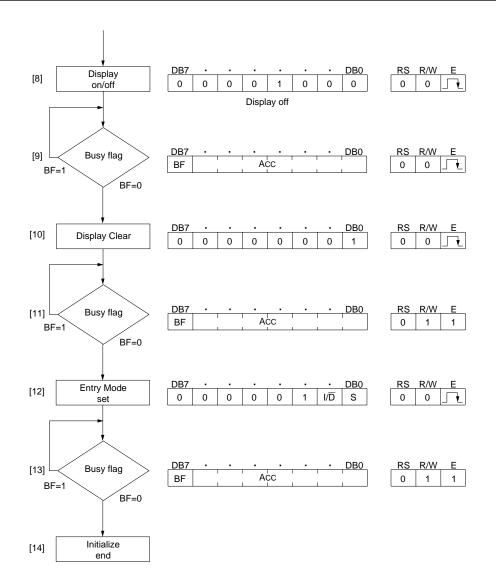
Reading the Busy Flag/Address Counter yields the highorder nibble first, followed by the low-order nibble.

System Initialization

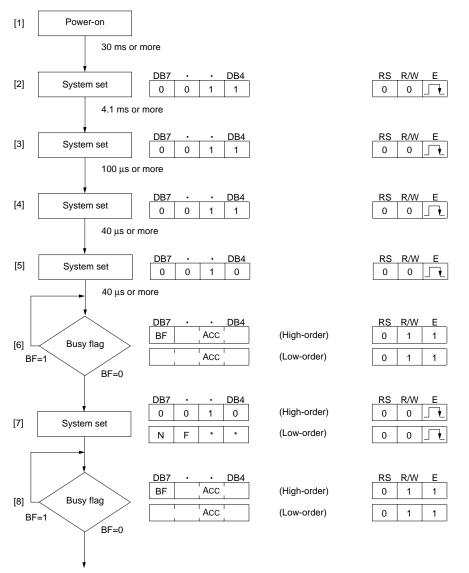
Power-on reset

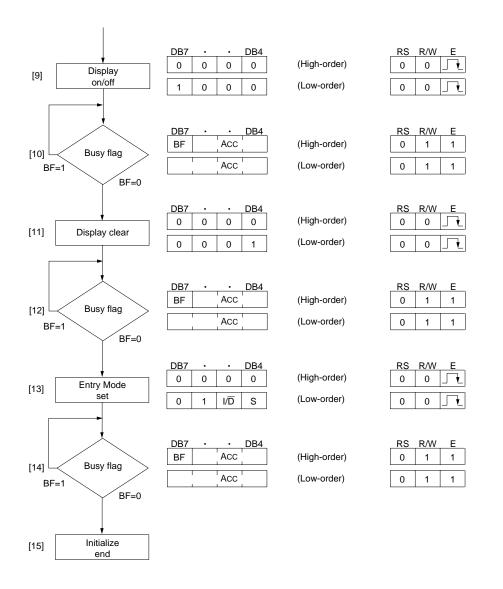
Although the SED1278 has no external reset input, it will automatically reset on system power-on. The sequence starts once VDD < 4.5 V.


While the SED1278 is resetting the busy flag is set to 1. The reset takes about 3,750 clock cycles. For example if fosc = 250 kHz, the reset sequence takes about 30 ms. Reset places the SED1278 in a state where


- the display is clear.
- the system configuration corresponds to
 - IF = 1: 8-bit MPU interface
 - N = 0: 1-line display
 - F = 0: 1/8 duty cycle
- the display configuration corresponds to
 - D = 0: Display off
 - C = 0: Cursor off
 - B = 0: Blink off
- the entry mode is set to
- $I/\overline{D} = 1$: Increment
 - S = 1: No display shift

Software initialization


Initialization during power-on reset involves several unstable factors related to power-supply output fluctuations. For this reason it is strongly recommended that a software initialization sequence is followed.


• Software Initialization (8-bit MPU bus, fosc = 250 kHz)

• Software Initialization (4-bit MPU bus, fosc = 250 kHz)

THE CHARACTER GENERATOR

Character Generator ROM (CGROM)

The SED1278 contains a 240 character, masked CGROM. Each character is 5×10 pixels, for 1/11 duty cycle compatibility. Refer to Appendix A for available codes and their corresponding fonts.

Because the CGROM is masked, customers may arrange to have their own CGROM masks made.

A custom mask allows the user to have

- their own character set.
- a character set of up to 256 characters.

Please contact the SEIKO EPSON Marketing Department for further information.

If a custom CGROM is used, two things should be noted.

- 1. The "Clear Display" instruction relies on the character whose code is 20H being a blank.
- 2. If more than 240 ROMed characters are specified, then the number of CGRAM characters available is correspondingly reduced. The physical RAM space is still available, and is available for use as memory, however it will no longer have an associated character code.
- 3. The character ROM implemented in a particular chip is indicated by a two character suffix attached to the device number, for example SED1278F0A.

Character Generator RAM (CGRAM)

The SED1278 has 64 bytes of CGRAM, allowing the user to program up to 8 characters.

5×8 pixel font (1/8 or 1/16 duty cycle)

The maximum character height is 8 pixels, however if a cursor is used row 7 should be all zeros. 8 such characters are available to the user.

The CGRAM address is made up of the following components.

- The least significant three bits, a2 to a0, specify the row number of the character data.
- Bits as to as are made up of the least significant three bits of the character code.
- The most significant bit, a7, is ignored. Figure 1 shows an example 5×8 pixel font.

	С	GRAM	addres	S				(C		M data er patte	rn)		
A5				•	A0	DB7					•		DB0
0	0	0	0	0	0	*	*	*	0	0	0	0	1
0	0	0	0	0	1	*	*	*	0	0	0	0	1
0	0	0	0	1	0	*	*	*	0	1	0	0	1
0	0	0	0	1	1	*	*	*	1	1	1	1	1
0	0	0	1	0	0	*	*	*	0	1	0	0	0
0	0	0	1	0	1	*	*	*	0	0	0	0	0
0	0	0	1	1	0	*	*	*	0	0	0	0	0
0	0	0	1	1	1	*	*	*	0	0	0	0	0

Figure 1 A 5×8 Pixel Font

5×11 pixel font (1/11 duty cycle)

The maximum character height is 11 pixels, however if a cursor is used row 10 must be left blank.

The SED1278 requires that, although the maximum character height is 11 rows, each character is allocated 16 rows (bytes) of address space. The last five bytes are ignored.

The CGRAM address is made up of the following components.

- The least significant 4 bits, a3 to a0, specify the row number of the character data.
- Bits a5 and a4 correspond to bits 2 and 3, respectively, of the character code.
- The most significant bit, a7, is ignored.
- Figure 2 shows an example 5×11 pixel font.

	C	GRAM	addres	s					CGRA	M data			
A5					A0	DB7							DB0
0	0	0	0	0	0	*	*	*	0	0	0	0	1
0	0	0	0	0	1	*	*	*	0	0	0	0	1
0	0	0	0	1	0	*	*	*	0	0	0	0	1
0	0	0	0	1	1	*	*	*	0	0	1	0	1
0	0	0	1	0	0	*	*	*	0	1	0	0	1
0	0	0	1	0	1	*	*	*	1	1	1	1	1
0	0	0	1	1	0	*	*	*	0	1	0	0	0
0	0	0	1	1	1	*	*	*	0	0	1	0	0
0	0	1	0	0	0	*	*	*	0	0	0	0	0
0	0	1	0	0	1	*	*	*	0	0	0	0	0
0	0	1	0	1	0	*	*	*	0	0	0	0	0
0	0	1	0	1	1	*	*	*	*	*	*	*	*
0	0	1	1	0	0	*	*	*	*	*	*	*	*
0	0	1	1	0	1	*	*	*	*	*	*	*	*
0	0	1	1	1	0	*	*	*	*	*	*	*	*
0	0	1	1	1	1	*	*	*	*	*	*	*	*

Figure 2 A 5×11 Pixel Font

LCD INTERFACE

LCD Drive Voltages

The SED1278 generates segment and common drive signals using the voltages supplied to pins V1, V2, V3, V4 and V5. The voltage levels at these pins depend on the duty cycle of the display. The specifications of these voltages.

The simplest way of producing these voltages is to use a resistive dividing network.

Figures 3 and 4 show examples of networks for 1/8, or 1/11, and 1/16 duty cycles respectively.

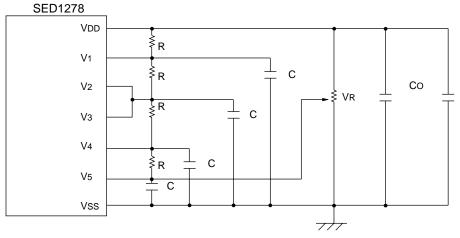
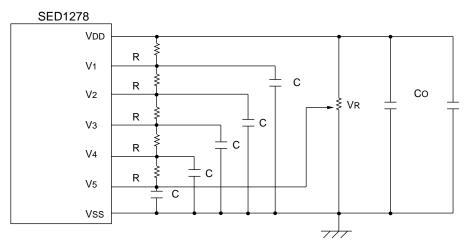
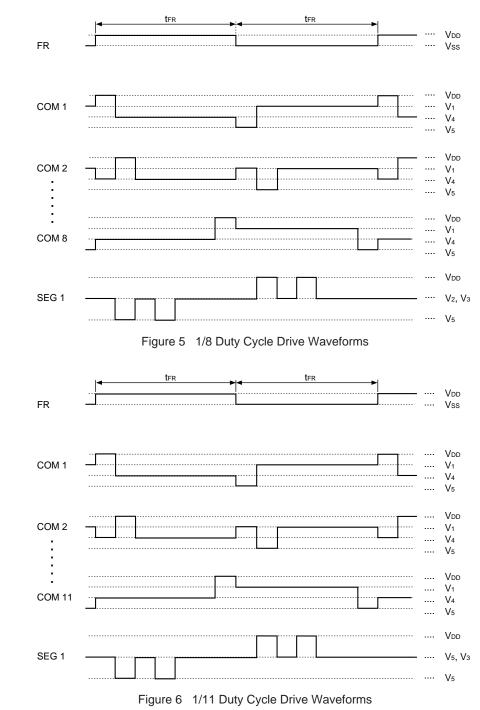


Figure 3 LCD Drive Voltage Network – 1/8 or 1/11 Duty Cycle




Figure 4 LCD Drive Voltage Network - 1/16 Duty Cycle

Notes: 1. V5 is set using a potentiometer and (VDD–VSS).

2. The power supply to the SED1278 should be bypassed with a capacitor, Co, of at least 0.1 μ F placed as close to the chip as possible.

LCD Drive Signal Waveforms

The segment and common drive waveforms generated by the SED1278, for various duty cycle ratios, are shown in figures 5, 6 and 7.

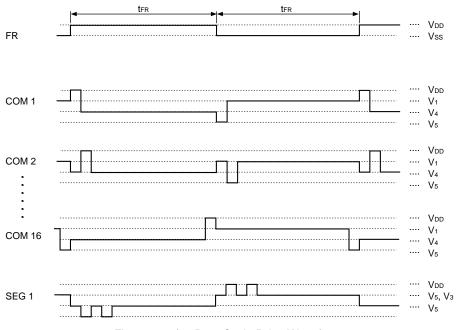
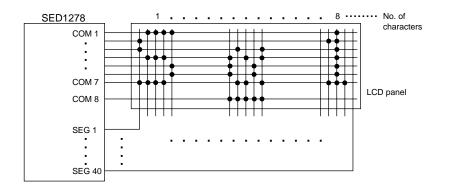
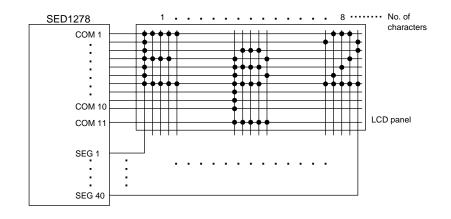
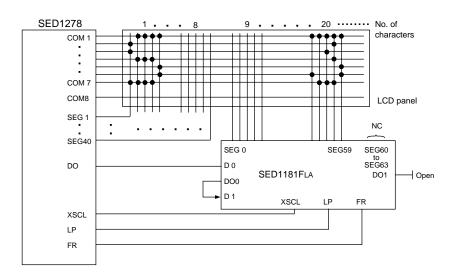
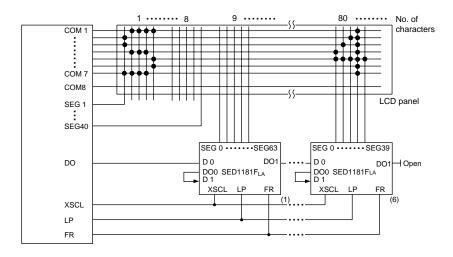



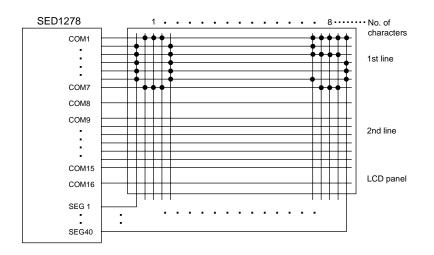
Figure 7 1/16 Duty Cycle Drive Waveforms

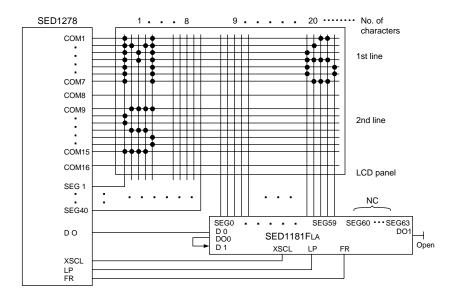

LCD Interface Configurations

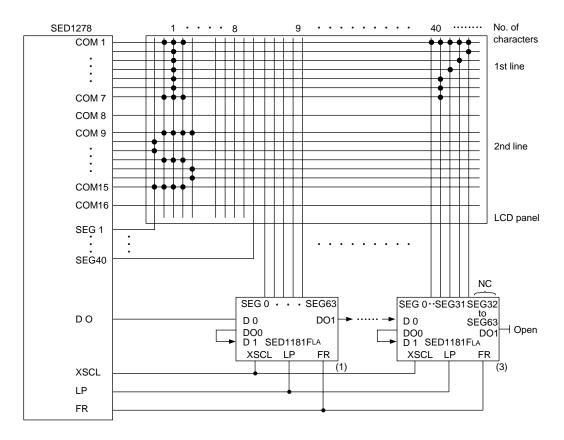
The SED1278 has 16 common and 40 segment drive outputs, enabling the chip to drive up to 16 characters by itself. The drive capability can be expanded to 80 characters, by using SED1181FLA external segment drivers.


- 1 line
- 8 characters
- 5×7 pixels + cursor
- 1/8 duty cycle
- System set: N = 0, F = 0


- 1 line
- 8 characters
- 5×10 pixels + cursor
- 1/11 duty cycle
- System set: N = 0, F = 1


- 1 line
- 20 characters
- 5×7 pixels + cursor
- 1/8 duty cycle
- System set: N = 0, F = 0


- 1 line
- 80 characters
- 5×7 pixels + cursor
- 1/8 duty cycle
- System set: N = 0, F = 0


- 2 line
- 8 characters
- 5×7 pixels + cursor
- 1/16 duty cycle
- System set: N = 1, F = don't care

- 2 line
- 20 characters
- 5×7 pixels + cursor
- 1/16 duty cycle
- System set: N = 1, F = don't care

- 2 line
- 40 characters
- 5×7 pixels + cursor
- 16 duty cycle
- System set: N = 1, F = don't care

MPU INTERFACE

The SED1278 has selectable 8- or 4-bit MPU interface. An example of a typical 8-bit MPU interface is shown figure 8.

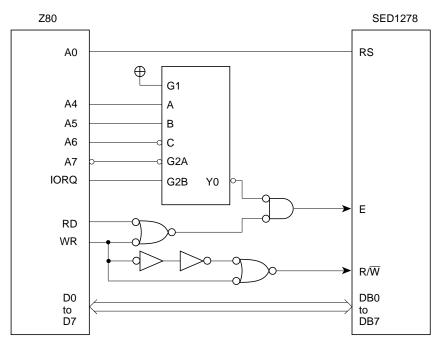


Figure 8 Interfacing the SED1278 to the Zilog Z80®

COMPARISON WITH HD44780 BY HITACHI

Item	HD44780 (Hitachi)	SED1278
Data display RAM	80 bytes	\leftarrow
Character generator ROM	192 types	240 types
Character font	5×7: 160 types	
	5 × 10: 32 types	5 × 10: 240 types
Character generator RAM	64 bytes	\leftarrow
LCD drive output	16 common driver outputs	\leftarrow
	40 segment drive outputs	
Character font (with cursor)	5×8 dots (1/8 and 1/16 duty)	\leftarrow
	5 × 11 dots (1/1 duty)	
Conversion to duty	1/8, 1/11, 1/16	\leftarrow
LCD drive voltage (VDD-V5)	Max. 13.5 V	Max. 1 VDD
	Min. 4.6 V	Min. 3 V
LCD drive waveform	Waveform A	Waveform D
	(Single frame AC drive)	(Dual frame AC drive)
E pulse width	450 nsec	220 nsec
Timing to change the address	The contents of address counter are	The contents of address
counter subsequent to CGRAM	determined 1.5 clock after release of	counter are determined
and DDRAM data writing and	busy state	immediately after release
reading	(6 microseconds at fosc = 250 kHz).	of busy state.
No. of instructions	11	\leftarrow
Reset terminal	Not provided	\leftarrow
Chip selector terminal	Not provided	\leftarrow
Power-on reset terminal	Provided	\leftarrow
Extension segment driver	Hitachi HD44100: 40 outputs	\leftarrow
	SED1181FLA: 64 outputs	
Package	80-pin plastic flat package	\leftarrow
Pin layout		Pin compatible

APPENDIX A: CHARACTER CODES AND FONTS

SED1278F0A/SED1278D0A

			Higher 4-bit (D4 to D7) of Character Code (Hexadecimal)														
		0	1	2	3	4	5	6	7	8	9	A	в	С	D	Е	F
	0	CG RAM (1)						•						-;;;			
	1	CG RAM (2)		:	1				·:::[÷	÷;		
	2	CG RAM (3)		::					:				·	:			
	3	CG RAM (4)					:;	:	·			:	:		•	:	÷
	4	CG RAM (5)										•.		.	<u>.</u>		::::
adecimal)	5	CG RAM (6)										::					
ode (Hexa	6	CG RAM (7)					l.,i	÷	÷:					••••			
aracter Co	7	CG RAM (8)		:	÷				.								
03) of Ch	8	CG RAM (1)										÷		··••·	Ņ		
Lower 4-bit (D0 to D3) of Character Code (Hexadecimal)	9	CG RAM (2)				1	÷	1	•;			•				•• i	
Lower 4-b	A	CG RAM (3)		:#:	:: ::				 						ŀ		
	в	CG RAM (4)		·	::	K.		K				::	!!	.		×	
	с	CG RAM (5)		:		<u>.</u>		1				÷::	;		.	: : :-	F
	D	CG RAM (6)						i i						••••	•• •••*	÷	
	Е	CG RAM (7)		::				F":					1	•	•••		
	F	CG RAM (8)							÷			•::•	••	•••			

SED1278F0B/SED1278D0B

			Higher 4-bit (D4 to D7) of Character Code (Hexadecimal)														
		0	1	2	3	4	5	6	7	8	9	A	в	С	D	Е	F
	0	CG RAM (1)						:		: 				ľ		Ë.	
	1	CG RAM (2)		:	1							· …	••	÷		Ŷ	
	2	CG RAM (3)											÷	⇔			
	3	CG RAM (4)						:	·	••••• •••••			•			÷	÷
	4	CG RAM (5)			÷.								-	÷			
idecimal)	5	CG RAM (6)	I.					֥	.					·		Ĩ	Ŧ
Lower 4-bit (D0 to D3) of Character Code (Hexadecimal)	6	CG RAM (7)					Ņ		÷				•	··			.
aracter Co	7	CG RAM (8)		:						:				÷		1	
03) of Chi	8	CG RAM (1)												÷	·····	K	
it (D0 to [9	CG RAM (2)						1	·!					ľ			
-ower 4-b	А	CG RAM (3)		:	::												
	в	CG RAM (4)		<u>-</u>	:	Ľ.		١ť		1			*:	.		Ļ?	
	с	CG RAM (5)		:		.	•••										
	D	CG RAM (6)	÷:											::	÷		
	Е	CG RAM (7)						1	•••			÷					
	F	CG RAM (8)										#					

SED1278

SED1278Foc/SED1278Doc

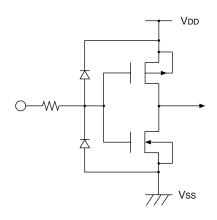
			Higher 4-bit (D4 to D7) of Character Code (Hexadecimal)														
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
	0	CG RAM (1)						•									
	1	CG RAM (2)		:	1				•								
	2	CG RAM (3)							:			÷			1	֥	
	3	CG RAM (4)					:;	:	·							:	
	4	CG RAM (5)							÷						1		
adecimal)	5	CG RAM (6)															
ode (Hexa	6	CG RAM (7)						÷	••			-					
aracter C	7	CG RAM (8)						•									
D3) of Ch	8	CG RAM (1)															
Lower 4-bit (D0 to D3) of Character Code (Hexadecimal)	9	CG RAM (2)						1	·!				÷		÷		
Lower 4-t	А	CG RAM (3)		:	::				 								
	в	CG RAM (4)			::												
	с	CG RAM (5)		:		.	•••	1				1				÷	
	D	CG RAM (6)						i i				1		:		÷	
	E	CG RAM (7)		::				i.									
	F	CG RAM (8)												•			

SED1278F0E/SED1278D0E

				Hiał	ner 4-	bit (D	04 to	D7) o	f Cha	racte	r Coc	le (H	exade	ecima	1)		
		0	1	2	3	4	5	6	7	8	9	A	В	С	, D	E	F
	0	CG RAM (1)						•	÷				<u>.</u>		F.,		·
	1	CG RAM (2)		-					•						•.•*		·.·
	2	CG RAM (3)		::					:				.			:	
	3	CG RAM (4)					:;	:	·						÷		
	4	CG RAM (5)			÷				······						: 	•	•
adecimal)	5	CG RAM (6)			·		¹					·					
ode (Hexa	6	CG RAM (7)					l.,i	÷	••			•					
aracter Co	7	CG RAM (8)		:	:			·;									F
03) of Chi	8	CG RAM (1)														:	
Lower 4-bit (D0 to D3) of Character Code (Hexadecimal)	9	CG RAM (2)						:					÷				
Lower 4-b	А	CG RAM (3)		: : ::	::										·	:	
	в	CG RAM (4)			: :		Ĩ	K.				1					
	с	CG RAM (5)		:		<u>.</u>	•••		.**			1			<u>.</u>	.	
	D	CG RAM (6)		•••••				i i				1	:			÷	
	E	CG RAM (7)							÷				<u>.</u>				Ŧ
	F	CG RAM (8)							÷			÷		••			

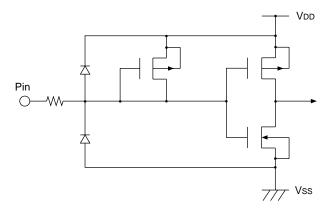
SED1278Fog/SED1278Dog

				Hiał	ner 4-	bit (D	04 to	D7) o	f Cha	racte	r Coc	le (H	exade	ecima	1)		
		0	1	2	3	4	5	6	7	8	9	A	в	С	, D	E	F
	0	CG RAM (1)						•		-							
	1	CG RAM (2)		:	1									1			
	2	CG RAM (3)		::								÷				:	
	3	CG RAM (4)		**			:	:	·								÷
	4	CG RAM (5)		:#:	4				÷							•	:
adecimal)	5	CG RAM (6)													••		
ode (Hexa	6	CG RAM (7)					Ņ	÷	•:			-			÷		
aracter C	7	CG RAM (8)		:				•	.						ŀŀ		
D3) of Ch	8	CG RAM (1)							:::				••	֥	::	:	
Lower 4-bit (D0 to D3) of Character Code (Hexadecimal)	9	CG RAM (2)				1		1	·!				÷				
Lower 4-b	А	CG RAM (3)		:	::				·							:	.
	в	CG RAM (4)		··•	::			i.:									
	с	CG RAM (5)		:		.		1								÷.	*
	D	CG RAM (6)										1	:			÷	
	E	CG RAM (7)		::				i.									
	F	CG RAM (8)							÷.					••			

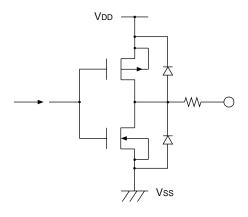

SED1278FoH/SED1278DoH

			Higher 4-bit (D4 to D7) of Character Code (Hexadecimal)														
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	CG RAM (1)						•						•	:		
	1	CG RAM (2)			1				·:::						:		
	2	CG RAM (3)												·			
	3	CG RAM (4)		*			:;	÷	·					₿ .	::		
	4	CG RAM (5)			4				·				:				
adecimal)	5	CG RAM (6)							.					::::		.	
ode (Hexa	6	CG RAM (7)					.	÷.	•:				:#:	H.			÷: -:
aracter Co	7	CG RAM (8)		3					.					·:::		•*	
03) of Chi	8	CG RAM (1)					×	ŀ					M	·::		••	
Lower 4-bit (D0 to D3) of Character Code (Hexadecimal)	9	CG RAM (2)						1	•;					÷	· † .		
Lower 4-b	А	CG RAM (3)		:#:	:: ::				 				F.	::::	••		
	в	CG RAM (4)			::			K				·	.71	::	ŀ	÷	÷
	с	CG RAM (5)		:		<u>.</u>	.	1					ŀ				
	D	CG RAM (6)						1				.		÷			
	E	CG RAM (7)		::				i.	i								
	F	CG RAM (8)													::		

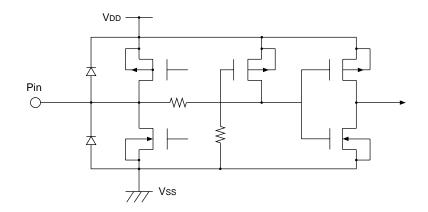
APPENDIX B: PIN CONSTRUCTION


Input Pin Type 1

- E OSC1


Input Pin Type 2

- RS R/W


Output Pin

- OSC2XSCL, LP, FR, DO

I/O Pin

• DB0 to DB7

SED1280 Dot-Matrix LCD Controller

Technical Manual

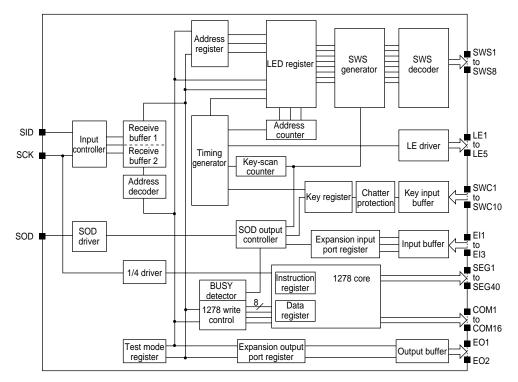
Contents

OVERVIEW	
FEATURES	
BLOCK DIAGRAM	
PIN DESCRIPTION	
SPECIFICATIONS	
FUNCTIONAL DESCRIPTION	
DESIGN INFORMATION	
APPLICATION CIRCUITS	

OVERVIEW

The SED1280 is an enhanced version of the SED1278 dot-matrix LCD controller. In addition to the SED1278 functionality, the SED1280 also incorporates a key-matrix controller, LED drivers and additional input and output ports.

The SED1280 comprises the SED1278 core, display data and character generator RAM, character generator ROM, LCD segment and common drivers, LED-matrix and key-matrix inputs and outputs, extended input and output ports and a serial microcontroller interface. The SED1280 operates from a 5 V supply and is available in 100-pin QFP5s.


FEATURES

- LCD controller
 - 80-byte, 80-character display data RAM
 - Character generator ROM
 240, 5 × 10-pixel characters
 - Character generator RAM
 - 64 bytes
 - Eight selectable 5×7 -pixel or 5×8 -pixel characters.
 - Four selectable 5 × 10-pixel or 5 × 11-pixel characters
 - Outputs
 - 40 segment outputs
 - 16 common outputs
 - Modes

Display type	Duty	Number of SED1181F common drivers	Character configuration (columns × rows)
One line	1/8 or	0	8 × 1
	1/11	6	80 × 1
Two lines	1/16	0	8×2
		3	40 × 4

- Key matrix scan controller
 - Eight key-scan outputs
 - Ten key-scan inputs
 - Can control an 8×10 key matrix.
- LED controller
 - Five LED driver outputs
 - Eight LED driver commons
 - Can control a 5×8 -LED matrix
- I/O ports
 - Three input ports
 - · Two output ports
- Serial microcontroller interface
- Single 5 V supply
- 100-pin QFP5

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	Description
1	Vss	Ground
2 to 6	V1 to V5	LCD controller power supply inputs
7	LP	Data latch pulse output
8	XSCL	Data transfer clock
9	Vdd	5 V supply
10	FR	LCD AC controller output
11	DO	Serial data output
12	SCK	1 MHz system clock input
13	SID	Serial data input
14	RST	Reset input
15 to 24	SWC10 to SWC1	Key-scan inputs
25 to 30, 32, 33	SWS8 to SWS1	Multiplexed key-scan and LED output ports
34 to 36	EI3 to EI1	Expanded input ports
37 to 41	LE5 to LE1	LED controller outputs
42	SOD	Key- and expanded-input port status serial data output
43, 44	EO2, EO1	Expanded output ports
45 to 60	COM1 to COM16	Common driver outputs
61 to 100	SEG40 to SEG1	Segment driver outputs

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage range	Vdd	-0.3 to 7.0	V
	V1 to V5	-0.3 to VDD+0.3	V
Input voltage range	Vi	-0.3 to VDD+0.3	V
Operating temperature range	Topg	-20 to 75	°C
Storage temperature range	Tstg	-65 to 150	°C

Note: $VDD \ge V1 \ge V2 \ge V3 \ge V4 \ge V5 \ge VSS = 0 V$

Recommended Operating Conditions

			Ta = 25°C
Parameter	Symbol	Rating	Unit
Supply voltage	Vdd	5	V
Supply voltage range	Vdd	4.5 to 5.5	V

DC Electrical Characteristics

VDD = 5.0 V, Vss = 0 V, Ta = -20 to 75° C

Devenueter	Cumhal		D = 5.0 V, V	Rating		
Parameter	Symbol	Condition	min	typ	max	Unit
Supply current	IOP		-	-	1	mA
SCK and SID LOW-level input voltage	VIL1		-	-	0.8	V
EI1 to EI3 LOW-level input voltage	VIL2		Vss	-	1.0	V
SCK and SID HIGH-level input voltage	VIH1		2.0	-	-	V
EI1 to EI3 HIGH-level input voltage	Vih2		Vdd-1.0	-	Vdd	V
EI1 to EI3 hysteresis voltage	VHYS		1	-	-	V
XSCL, LP and DO LOW-level output voltage	Vol1	IoL = 0.04 mA	-	-	0.1Vdd	V
SWS1 to SWS8 LOW-level output voltage	Vol2	IoL = 25 mA	-	-	1.25	V
LE1 to LE5 LOW-level output voltage	Vol3	IoL = 2.0 mA	-	-	0.4	V
SOD, EO1 and EO2 LOW-level output voltage	Vol4	IoL = 2.0 mA	-	-	0.4	V
XSCL, LP and DO HIGH-level output voltage	Voh1	Iон = -0.04 mA	0.9Vdd	_	-	V
SWS1 to SWS8 HIGH-level output voltage	Voh2	Іон = –200 µА	4.0	-	-	V
LE1 to LE5 HIGH-level output voltage	Vонз	Іон = –200 µА	2.4	-	-	V
SOD, EO1 and EO2 HIGH-level output voltage	Vон4	Іон = –200 µА	2.4	-	-	V
SWC1 to SWC10 pull-up resistance	RUP1		5	10	20	kΩ
RST pull-up resistance	Rup2		50	100	200	kΩ
COM1 to COM16 driver ON resistance	Rсом	IVseg–VnI = 0.5 V	-	2	10	kΩ
SEG1 to SEG40 driver ON resistance	Rseg	IVseg–VnI = 0.5 V	-	2.5	10.0	kΩ
SCK frequency	fsck		0.5	1.0	1.4	MHz
SCK duty cycle	Duty		45	50	55	%
SCK rise time	tr		-	-	200	ns
SCK fall time	tr		-	-	200	ns
SWC1 to SEC10 input debounce time	t KIN		16	-	-	μs
SWS1 to SWS8 instantaneous output current	Isws		-	-	25	mA
SWS1 to SWS8 total output current	Σlsws			-	100	mA
LCD driver output voltage	VLCD	VLCD = VDD-V5	3.0	-	Vdd	V

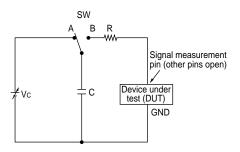
Latch-up endurance

				Vde	o = 5 V, Ta	$a = 25^{\circ}C$
Parameter	Symbol	Condition		Rating		Unit
Falalletei	Symbol	Condition	min	typ	max	Unit
Input DC trigger current	Iτι		-40	-	40	mA
Output DC trigger current	Іто		-40	-	40	mA

Static breakdown resistance

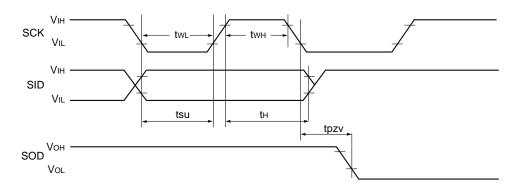
VDD = 5 V, Ta = 25°C

Parameter	Symbol	Condition		Unit		
Falameter	Symbol	Condition	min	typ	max	Unit
Input terminal breakdown voltage	Vsi	$C = 200 \text{ pF}, R = 0 \Omega$	-250	-	250	V
Output terminal breakdown voltage	Vso	$C = 200 \text{ pF}, R = 0 \Omega$	-250	-	250	V
VDD, Vss and V1 to V5 breakdown voltage	Vs	$C = 200 \text{ pF}, R = 0 \Omega$	-250	-	250	V


Measurement conditions

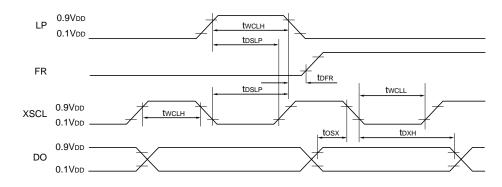
The measurement circuit is shown in the following figure. The switch is in position A until capacitor C charges to VC volts. It then switches to position B and the capacitor discharges through the device under test (DUT), applying a surge voltage to the test pin. All other pins are left open.

The supply voltages, VC, increases in 50 V steps from 50 V to a maximum of 1 kV, or until the device breaks down. Breakdown has occurred if the leakage current between the test pin and the GND pin increases by 0.1 μ A when the absolute maximum rated voltage is applied to the test pin.



Serial data timing

VDD = 5 V, Vss = 0 V, $Ta = -20 to 75^{\circ}C$


Parameter	Symbol	Condition		Unit		
Parameter	Symbol		min	typ	max	Unit
SCK LOW-level pulsewidth	tw∟		0.35	-	0.65	μs
SCK HIGH-level pulsewidth	twн		0.35	-	0.65	μs
Data setup time	tsu		200	-	-	ns
Data hold time	tн		200	-	-	ns
Output delay time	t PZY		-	-	200	ns

Expanded segment output timing

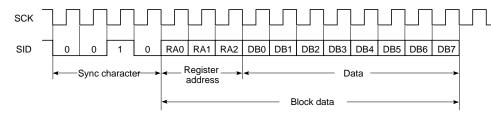
VDD = 5.0 V, Vss = 0 V, Ta = -20 to 75°C	VDD = 5.0 V.	$Vss = 0 V_{1}$	Ta = −20 to 75°C
--	--------------	-----------------	------------------

Parameter	Symbol	Condition		Unit		
Faranieter	Symbol	Condition	min	typ	max	Unit
LP and XSCL LOW-level pulsewidth	twcll		0.8×2/fc	-	-	ns
LP and XSCL HIGH-level pulsewidth	twclh		0.8×2/fc	-	-	ns
XSCL to LP and LP to XSCL setup time	t DSLP		0.7×2/fc	-	-	ns
DO to XSCL setup time	tosx		0.7×2/fc	-	-	ns
XSCL to DO hold time	tdнx		0.7×2/fc	_	_	ns
FR delay time	t dfr		-1	-	1	μs

Reset timing

 $VDD = 5.0 V, VSS = 0 V, Ta = -20 to 75^{\circ}C$

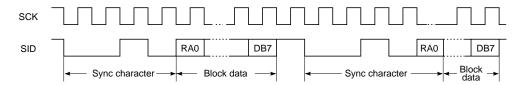
Note: $0.1 \text{ ms} \le \text{tr} \le 10 \text{ ms}, \text{tf} \ge 1 \text{ ms}, \text{tRST} \ge 30 \text{ ms}.$


FUNCTIONAL DESCRIPTION

Serial Data Communication

The SED1280 uses a synchronous serial data system, with all timing referenced to SCK. Data communication uses a 4-bit synchronization pattern.

Serial data reception

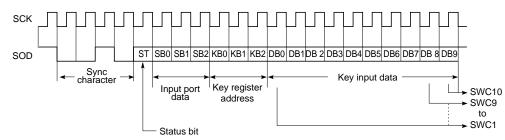

Data input on SID is clocked into the receiver buffer on the falling edge of SCK as shown in the following figure.

As the buffer state is undefined after power-ON, $\overline{\text{RST}}$ should be momentarily held LOW after power-ON to set all bits of the buffer to 1.

Data loaded into the buffer is compared with the

synchronization pattern. If a match is detected, the next bit is treated as the start of the data block. The synchronization pattern should be repeated between consecutive blocks as shown in the following figure.

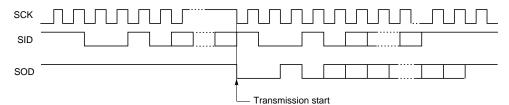
Data reception limits


The receiver incorporates two data buffers—buffer 1 and buffer 2. When continuously receiving data, buffer 1 fills first, then buffer 2. New data blocks are only received when both buffers are empty. New data is lost if it is sent while the controller is processing data in one or both buffers. The busy status bit, ST1, is set to 1 while the controller is processing data.

Note that new data cannot be recieved while data is being transmitted, and that two data blocks received consecutively are treated as a single block.

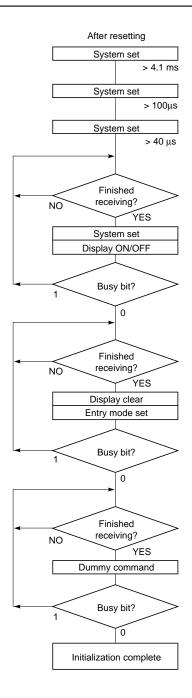
Serial data transmission

SWC1 to SWC10 and EI1 to EI3 are scanned and their input logic levels transmitted serially from SOD as

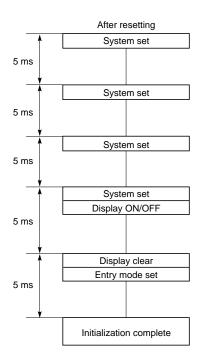

shown in the following figure. Data is clocked out on the falling edge of SCK.

As the state of SOD is undefined after power-ON, $\overline{\text{RST}}$ should be momentarily held LOW after pow-ON to set SOD HIGH. SOD remains HIGH until the first command from the host is received and returns HIGH when data transmission is complete.

Data transmission and reception timing

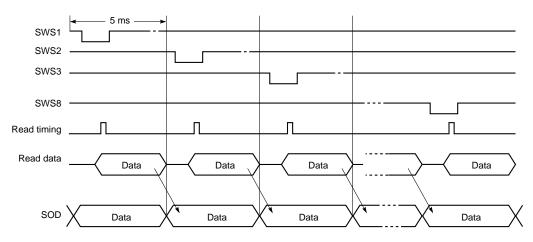

Data transmission starts from the first falling edge of SCK after a block of data has been received. If two blocks of data are received consecutively, data transmission starts from the first falling edge of SCK after the first block has been received, as shown in the following figure.

Status bit


The ST1 status bit indicates that the controller is processing received data and cannot receive new data. When ST1 is HIGH, data is being processed and the host should not transmit new data until ST1 is LOW.

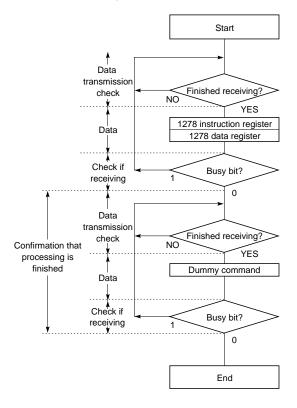
The host should begin checking ST1, as shown in the following figure, as soon as it transmits new data.

Register address	DB7			to				DB0
0	0	0	1	1	Х	Х	Х	Х
0	0	0	1	1	Х	Х	Х	Х
0	0	0	1	1	Х	Х	Х	Х
0	0	0	1	1	Ν	F	Х	Х
0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	1/D	S
2	Х	Х	Х	Х	Х	Х	Х	Х

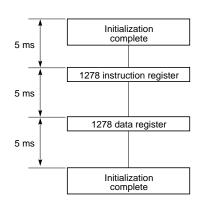

If the host does not check ST1, it should determine when to send new data by calculating the processing time of each data block as shown in the following figure.

Register address	DB7			to				DB0
0	0	0	1	1	Х	Х	Х	Х
0	0	0	1	1	Х	Х	Х	Х
0	0	0	1	1	Х	Х	Х	Х
0	0	0	1	1	Ν	F	Х	Х
0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	1/D	s

Key switch and input data


The SED1280 scans the key inputs and expanded input ports once every 5 ms. The scanned data is then output on SOD as shown in the following figure. The status bit is updated each time data is transmitted.

Data transmission flow charts


The following figures show the 1278 core display data RAM processing when data is transferred from the host to the SED1280.

Transmission using the busy bit

Register address	DB7		-	to)			DB0
0	1			Addı	ess d	ata		
1			DDR/	\M wr	ite da	ta		
2	Х	Х	Х	х	Х	Х	Х	Х

Timed access transmission

Register address	DB7		to			DB0
0	1		Adc	lress o	lata	
1		DD	RAM	write c	lata	

System Registers

The system registers access the data display RAM, character generator RAM and LED display RAM. These write-only registers are addressed using RA0 to RA2 as shown in the following table.

A	ddres	s	Name	Function
RA2	RA1	RA0	Name	Function
0	0	0	1278 instruction register	Sets the 1278 core command and RAM address.
0	0	1	1278 data register	Writes to the 1278 character generator RAM and display data RAM.
0	1	0	Not used	
1	1	0	Not used	
1	0	0	LED address register	Sets the LED display register address.
1	0	1	LED data register	Writes to the LED display address.
1	1	0	Expanded output port register	Controls the expanded output ports.
1	1	1	Test mode register	Used for factory inspection prior to delivery.

LED address and data registers

These five, 8-bit registers control an external 5×8 -LED display. When a display data bit is set, the corresponding LED is ON. The following table shows the relationships

between the registers, the LED output drivers and the output ports associated with each LED.

LED a	ddress re	egister	LED data register								Deux euteute nin
DB2	DB1	DB0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Row output pin
0	0	0									LE1
0	0	1									LE2
0	1	0									LE3
0	1	1									LE4
1	0	0									LE5
Colu	ımn outpu	ıt pin	SWS8	SWS7	SWS6	SWS5	SWS4	SWS3	SWS2	SWS1	

Note: LED address register bits DB3 to DB7 are ignored.

For example, the following table shows the address and data sequence to turn ON the two LEDs connected between LE3 and SW3, and LE3 and SW7.

eb	Address Data										
Stel	RA2	RA1	RA0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	0	0	×	×	×	×	×	0	1	0
2	1	0	1	0	1	0	0	0	1	0	0

Note: × = don't care

When LED data is written continuously, the LED address register increments automatically.

Expanded output port register

This 2-bit register contains the data output on the EO1 and EO2 expanded output ports as shown in the following table.

Expanded output port data register										
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0			
×	×	×	×	×	×	EO2	EO1			

Note: × = don't care

For example, the following table shows the address and data to set EO1 to LOW and EO2 to HIGH.

Ac	ddres	s								
RA2	RA1	RA0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	0	×	×	×	×	×	×	1	0

Note: $\times =$ don't care

Test mode register

This register is used to factory test the SED1280 prior to delivery. It is initialized by momentarily holding $\overline{\text{RST}}$ LOW.

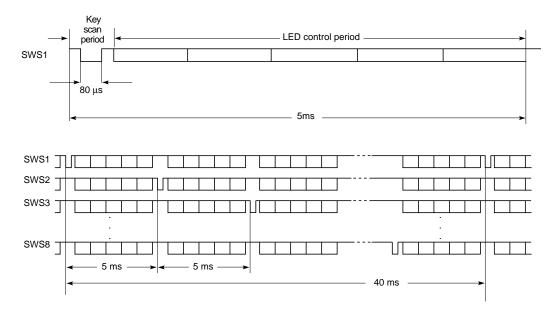
1278 instruction register

The following table shows the 1278 instructions.

Instruction				Co	de				Cyceles	Description
Instruction	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Cycles	Description
Display Clear	0	0	0	0	0	0	0	1	1640	Clears the entire display and resets the display data RAM address counter.
Cursor Home	0	0	0	0	0	0	1	×	1640	Resets the display data RAM address counter and returns a shifted display to its original position. The RAM contents are not changed.
Set Entry Mode	0	0	0	0	0	1	I/D	S	40	Enables the display shift and sets the display shift direction.
Display Attributes	0	0	0	0	1	D	С	В	40	Bit D enables/disables the entire screen, bit C enables/disables the cursor and bit B enables/ disables character blinking at the cursor position.
Cursor/display Shift	0	0	0	1	S/C	R/L	×	×	40	Shifts the display when a cursor move that does not alter the display data RAM occurs.
System Setup	0	0	1	IF	N	F	×	×	40	Bit iF sets the interface data length, bit N the number of display rows, and bit F, the font.
Select CGRAM	0	1	Cha	Character generator RAM address					40	Sets. the CGRAM address. Successive write instructions will address CGRAM.
Select DDRAM	1		Dis	olay da	ata RA	M addi	ress		40	Sets the DDRAM address. Successive write instructions will address DDRAM.

Note: $\times =$ don't care

The control bit functions are shown in the following table.


Control	Function								
bit	0	1							
I/D	Decrement	Increment							
s	No display shift	Disply shift							
S/C	Cursor movement	Display shift							
R/L	Left shift	Right shift							
IF	4-bit interface	8-bit interface							
N	One row	Two rows							
F	5×7 pixels	5×10 pixels							

1278 data register

This register is used for writing data to the 1278 display data (DD) RAM and character generator (CG) RAM. Data is written to DDRAM when a Select DDRAM instruction is executed before a Select CGRAM instruction, and written to CGRAM when a Select CGRAM instruction is executed.


Key Scanning

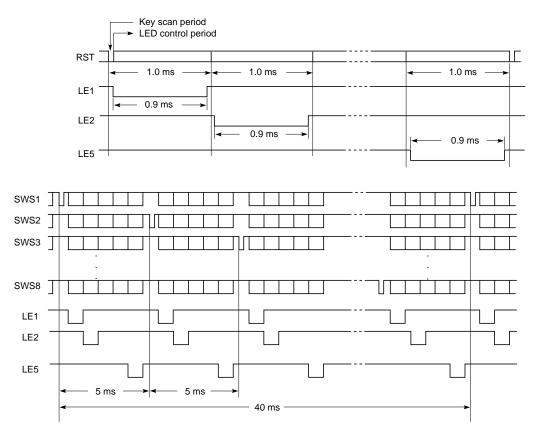
An 8×10 -key matrix can be scanned using SWS1 to SWS8 scan outputs and SWC1 to SWC10 scan inputs. The SWS1 timing during one scan interval and SWS1 to SWS8 timing during several scans are shown in the following figures.

Key scan initialization

A key scan starts automatically once the first block of data is received from the host, after a reset. The 5 ms scan cycle runs continuously, once started, as shown in the following figure.

Expanded Input Ports

Scanning of the EO1 to EO3 expanded input ports starts automatically once the first block of data is received from the host, after a reset.


LED Controller

Up to 40 LEDs can be connected to SWS1 to SWS8 and LE1 to LE5 to form an 8×5 matrix.

To control the LEDs, LE1 to LE5 are connected to the based of external pnp transistors, and SWS1 to SWS8, to the LED anodes.

LED controller timing

The LED controller timing for one scan and a series of scans is shown in the following figures.

LED controller limits

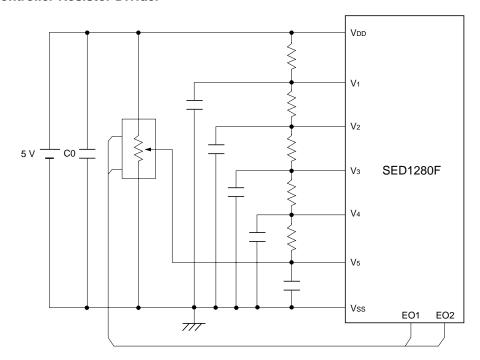
Up to 25 mA can be drawn from any one of SWS1 to SWS8 with a maximum total of 100 mA for all eight pins. As the SED1280 does not current limit its outputs, the host should limit the number of LEDs that are ON simultaneously. For example, if a LED draws 5 mA, a maximum of 20 LEDs can be ON simultaneously.

DESIGN INFORMATION

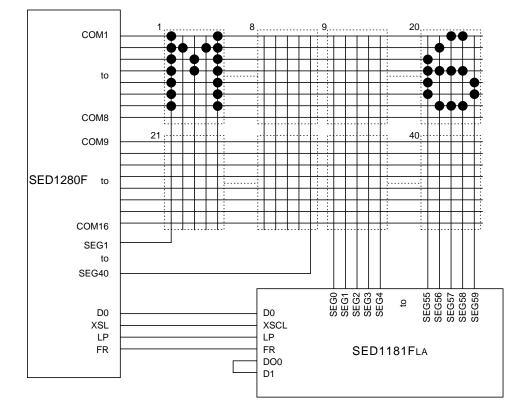
Although the SED1280 contains an SED1278 core, there are some important differences. The following points should be noted when designing a system using an SED1280.

System Clock

The 1 MHz SED1280 system clock is divided by four to generate the 250 kHz clock used by the SED1278 core. Accordingly, the SED1278 requires four times as many clock cycles as the SED1280 to execute the same instruction. The system clock must be connected, even if data transfer or key scanning is not used.

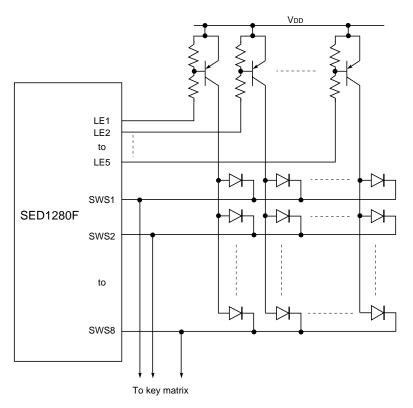

Data Interface

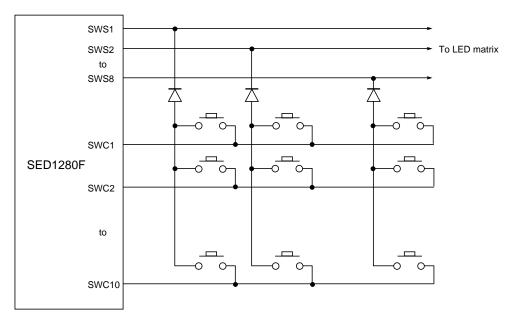
The SED1280 core data interface is eight bits wide. The SED1278 interface width is set to eight by setting the IF bit in the System Set instruction to 1.

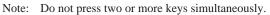

Data Output

The SED1280 does not support the SED1278 function allowing the host to read the DDRAM and CGRAM address counter. The SED1280 does, however, provide the ST1 busy bit output, which can be read by the host.

APPLICATION CIRCUITS LCD Controller Resistor Divider


Note: C0 is connected between VDD and Vss to prevent noise, and should be $0.1 \,\mu\text{F}$ or greater.


LCD Connections (2 \times 20 character, 5 \times 7 dots/character)


Note: SEG60 to SEG63 and DO1 are open.

LED Matrix Connections

Key Switch Matrix Connections

EPSON Internationa&alesOperations

AMERICA

S-MOS SYSTEMS, INC.

150 River Oaks Parkway San Jose, CA 95134, U.S.A. Phone: +1-408-922-0200 Fax: +1-408-922-0238

Telex: 176079 SMOS SNJUD

S-MOS SYSTEMS, INC. EASTERN AREA SALES AND TECHNOLOGY CENTER

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A. Phone: +1-617-246-3600 Fax: +1-617-246-5443

S-MOS SYSTEMS, INC. SOUTH EASTERN AREA SALES AND TECHNOLOGY CENTER

4300 Six Forks Road, Suite 430 Raleigh, NC 27609, U.S.A. Phone: +1-919-781-7667 Fax: +1-919-781-6778

S-MOS SYSTEMS, INC. CENTRAL AREA SALES AND TECHNOLOGY CENTER

1450 E.American Lane, Suite 1550 Schaumburg, IL 60173, U.S.A. Phone: +1-847-517-7667 Fax: +1-847-517-7601

EUROPE

- HEADQUARTERS -

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15 80992 Muenchen, GERMANY Phone : +49-(0)89-14005-0 Fax : +49-(0)89-14005-110

- GERMANY -EPSON EUROPE ELECTRONICS GmbH

SALES OFFICE Breidenbachstrasse 46 D-51373 Leverkusen, GERMANY Phone : +49-(0)214-83070-0 Fax : +49-(0)214-83070-10

- UNITED KINGDOM -EPSON EUROPE ELECTRONICS GmbH UK BRANCH OFFICE

G6 Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND Phone:+44-(0)1344-381700 Fax:+44-(0)1344-381701

- FRANCE -

EPSON EUROPE ELECTRONICS GmbH FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone:+33-(0)1-64862350 Fax:+33-(0)1-64862355

ASIA

- HONG KONG, CHINA -

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road Wanchai, HONG KONG Phone: +852-2585-4600 Fax: +852-2827-4346 Telex: 65542 EPSCO HX

- CHINA -

SHANGHAI EPSON ELECTRONICS CO., LTD.

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA Phone: 21-6485-5552 Fax: 21-6485-0775

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

10F, No. 287, Nanking East Road, Sec. 3 Taipei, TAIWAN, R.O.C. Phone: 02-2717-7360 Fax: 02-2712-9164 Telex: 24444 EPSONTB

EPSON TAIWAN TECHNOLOGY & TRADING LTD. HSINCHU OFFICE

13F-3,No.295,Kuang-Fu Road,Sec.2 HsinChu 300,TAIWAN,R.O.C. Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192 Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION KOREA OFFICE

10F, KLI 63 Bldg., 60 Yoido-Dong Youngdeungpo-Ku, Seoul, 150-010, KOREA Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department

Card Products & Marketing Group 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-7503 Fax: +81-(0)42-587-8423

ED International Marketing Department I (Europe & U.S.A.)

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department II (Asia) 421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of **"Saving" Technology**, Epson electronic devices. Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams. **Epson IS energy savings.**

SED1200 Series

LCD Controller/Drivers

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Devices Information on the EPSON WWW Server

http://www.epson.co.jp