NOTICE

No parts of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind aristing out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Control Law of Japan and may require an export licence from teh Ministry of International Trade and Industry or other approval from another government agency.

Note the following precautions when using semiconductor devices.

[Precautions for light]

Due to the solar battery principle, the characteristics of the semiconductor devices generally change when the devices are irradiated. This IC, therefore, may malfunction when exposed to light.
Since this IC is not completely lightproof, follow the precautions below when using a substrate or product on which it is mounted.
(1) Design and mount the substrate or product so as to block out any light from reaching the IC during actual use.
(2) For the inspection process, design the environments so as to block out any light from reaching the IC.
(3) When blocking out light, take all surfaces of the IC chip into account.
© Seiko Epson corporation 1998 All right reserved.
i8088 and i8086 are registered trademarks of Intel Corporation.
Z80 is registered trademark of Zilog Corporation.
V20 and V30 are registered trademarks of Nippon Electric Corporation.

CONTENTS

1. Selection Guide
2. SED 1200
3. SED 1210
4. SED 1220
5. SED1225 Series
6. SED1230 Series
7. SED1234/35 Series
8. SED1240 Series
9. SED 1278
10. SED 1280

SED1200 Series LCD Controller/Drivers

Selection Guide

LCD controller-drivers for small-sized displays

Built-in character generators together with segment and common drivers simplify the task of displaying microprocessor messages on small LCDs.

Part number	Supply voltage range (V)	LCD voltage range (V)	Duty	Segment	Common	Display RAM (characters)	Microprocessor interface	Extension display output	Package	Comment
SED1200DoA	2.5-5.5	3.5-5.5	1/8,1/16	50	16	20	4-bit parallel	-	Al pad chip	JIS character
SED1200Dob										ASCII character
SED1200FoA									QFP1-80pin	JIS character
SED1200Fob										ASCII character
SED1200F1B									QFP14-80pin	
SED1210Doa				40		40	4 or 8-bit parallel	Serial	Al pad chip	JIS character
SED1210Dob										ASCII character
SED1210FoA										JIS character
SED1210Fob									QFPJ-80pin	ASCII character
SED1220Dxb	2.4-3.6	4.0-7.0	1/18,1/26	62	26	36	4 or 8 -bit parallel or Serial	-	Au bump chip	LCD static drive allowed Three standard characters (JIS, ASCII, Cellular)
SED1220Txx									TCP	
SED1221Dxв					18				Au bump chip	
SED1221Txx									TCP	
SED1220DxA									Al pad chip	
SED122ADxb									Au bump chip	
SED122ATxx									TCP	
SED1225Dxb	1.7-3.6	3.0-6.0	1/18,1/26	64	26	36	4 or 8-bit parallel or Serial	-	Au bump chip	
SED1225Tx									TCP	
SED1278D	4.5-5.5	3.0-5.5	1/18,1/11, 1/16	40	16	80	4 or 8-bit parallel	Serial	Al pad chip	Six standard characters ($\mathrm{OA} / \mathrm{OB} / 0 \mathrm{C} / 0 \mathrm{E} / 0 \mathrm{G} / 0 \mathrm{H}$)
SED1278F									QFP5-80pin	
SED1280F							Serial		QFP5-100pin	Three standard character ($0 \mathrm{~A} / 0 \mathrm{~B} / 0 \mathrm{C}$)
SED1230D	2.4-3.6	4.0-12.0		65	30	48	4 or 8 -bit parallel or Serial	-	Au bump chip	Built-in power circuit for LCD Three standard characters (JIS, ASCII, Cellular) SED1230/31/32/33 LCD static drive allowed SED1234/35 LCD dynamic drive only.
SED1230T									TCP	
SED1231D			$1 / 23$		23				Au bump chip	
SED1231T									TCP	
SED1232D			1/16		16				Au bump chip	
SED1232T									TCP	
SED1233D				80					Au bump chip	
SED1233T									TCP	
SED1234D			1/30	62	30				Al pad chip	
SED1235D			1/16		16				Al pad chip	
SED1240Dxв	1.8-5.5	5.0-16.0	1/34	80		80			Au bump chip	
SED1240Txx									TCP	
SED1241Dxв			1/26		26				Au bump chip	
SED1241Txx									TCP	
SED1242Dxв			1/18		18				Au bump chip	
SED1242Txx									TCP	

SED1200 Series LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW 2-1
FEATURES 2-1
BLOCK DIAGRAM 2-2
PINOUT 2-3
PIN DESCRIPTION 2-5
COMMAND DESCRIPTION 2-5
SPECIFICATIONS 2-7
OPERATION 2-13
APPLICATION NOTES 2-17
APPENDIX A: CHARACTER CODES AND FONTS 2-25
APPENDIX B: I/O TERMINAL STRUCTURE 2-27

OVERVIEW

The SED1200 is a Liquid Crystal Display (LCD) character display controller-driver, capable of directly driving displays as large as 2 lines of 105×8 pixel characters, with a minimum of external components.
The SED1200 has an internal character generator (CG) consisting of 160 JIS ASCII characters in ROM and four user definable characters in RAM. The internal CG, a versatile set of cursor and display control commands, mean that the system CPU is only responsible for the display data and commands, and not for the LCD display itself.

FEATURES

- Internal display RAM to hold 20 8-bit character codes.
- Internal character generator
- CGROM: 160 JIS ASCII characters.
- CGRAM: 4 user programmable 5×8 pixel characters
- Font: $\quad 5 \times 7$ pixel characters plus the underline cursor.
- JIS character set using SED1200F0A/SED1200D0A
- ASCII character set using SED1200F0b/ SED1200D0B
- Internal LCD driver circuitry
- 50 segment driver lines
- 16 common driver lines
- Total size: Two lines of 10 characters each (maximum). One line of 20 characters (LCD panel dependent)
- CPU interface
- 4-bit CPU data bus
- 13 display control commands
- Low external component count
- Built in RC oscillator (using one external feedback resistor)
- Built in LCD driver voltage-divider network.
- Implemented using low power CMOS technology
- TTL compatible CPU interface
- Power supply
- Logic: 2.5 V to 5.5 V
- LCD: 3.5 V to 5.5 V
- 80 pin QFP package SED1200F and chip (SED1200D)

BLOCK DIAGRAM

PINOUT

SED1200F Package Outline

SED1200D Die Outline

TABLE 1. SED1200 Pinout

No.	NAME	No.	NAME	No.	NAME	No.	NAME
1	SEG17	21	COM4	41	COM10	61	SEG37
2	SEG16	22	COM5	42	COM11	62	SEG36
3	SEG15	23	COM6	43	COM12	63	SEG35
4	SEG14	24	COM7	44	COM13	64	SEG34
5	SEG13	25	COM8	45	COM14	65	SEG33
6	SEG12	26	A0	46	COM15	66	SEG32
7	SEG11	27	$\overline{\text { CS }}$	47	COM16	67	SEG31
8	SEG10	28	$\overline{\text { RD }}$	48	SEG50	68	SEG30
9	SEG9	29	$\overline{\text { WR }}$	49	SEG49	69	SEG29
10	SEG8	30	Φ	50	SEG48	70	SEG28
11	SEG7	31	XD	51	SEG47	71	SEG27
12	SEG6	32	XG	52	SEG46	72	SEG26
13	SEG5	33	DB3	53	SEG45	73	SEG25
14	SEG4	34	DB2	54	SEG44	74	SEG24
15	SEG3	35	DB1	55	SEG43	75	SEG23
16	SEG2	36	DB0	56	SEG42	76	SEG22
17	SEG1	37	VSs	57	SEG41	77	SEG21
18	COM1	38	VLCD	58	SEG40	78	SEG20
19	COM2	39	VDD	59	SEG39	79	SEG19
20	COM3	40	COM9	60	SEG38	80	SEG18

PIN DESCRIPTION

CPU Interface

$\overline{\mathbf{C S}} \quad$ Active low chip select input.
$\overline{\mathbf{R D}}$ Active low read enable input.
WR Active low write strobe.
A0 Selects between instruction and display data access.
$\mathrm{A} 0=\mathrm{H}:$ Display data
$\mathrm{A} 0=\mathrm{L}:$ Instruction
D0-D2 Active high CPU data inputs.
D3 Active high CPU data input/output.
$\Phi \quad$ Clock input for command execution.

Oscillator
OSC1, OSC2
Terminals for the oscillator external feedback resistor, Rf. If an externally generated clock is used, it is connected to OSC1; OSC2 is left open.

Power Supply

VdD Logic power supply
VLCD LCD power supply
Vss System ground (0 V).

LCD Interface
COM1-COM16 LCD common driver outputs.
SEG1-SEG50 LCD segment driver outputs.

COMMAND DESCRIPTION

Command Summary

TABLE 2. SED1200 Command Summary

COMMAND NAME	$\overline{\mathbf{C S}}$	$\overline{\text { WR }}$	$\overline{\mathrm{RD}}$	$\overline{\text { AO }}$	D7	D6	D5	D4	D3	D2	D1	D0	REMARKS
SET CURSOR DIRECTION	0	0	1	0	0	0	0	0	0	1	0	D/I	D0 = $1 \ldots$ Decrement D0 $=0$... Increment
CURSOR ADDRESS $-1 /+1$	0	0	1	0	0	0	0	0	0	1	1	-1/+1	D0 = 1 ... Cursor address -1 D0 = $0 \ldots$ Cursor address +1
CURSOR FONT SELECT	0	0	1	0	0	0	0	0	1	0	0	A/U	D0 $=1 \ldots$ All dots blinking D0 = $0 \ldots$ Underline
CURSOR BLINK ON/OFF	0	0	1	0	0	0	0	0	1	0	1	ON/OFF	$\begin{aligned} & \mathrm{DO}=1 \ldots \mathrm{ON} \\ & \mathrm{DO}=0 \ldots \mathrm{OFF} \end{aligned}$
DISPLAY ON/OFF	0	0	1	0	0	0	0	0	1	1	0	ON/OFF	$\begin{aligned} & \mathrm{DO}=1 \ldots \mathrm{ON} \\ & \mathrm{DO}=0 \ldots \mathrm{OFF} \end{aligned}$
CURSOR ON/OFF	0	0	1	0	0	0	0	0	1	1	1	ON/OFF	$\begin{aligned} & \mathrm{DO}=1 \ldots \mathrm{ON} \\ & \mathrm{DO}=0 \ldots \mathrm{OFF} \end{aligned}$
SYSTEM RESET	0	0	1	0	0	0	0	1	0	0	0	0	Data RAM \& CGRAM are not affected
LINE SELECT	0	0	1	0	0	0	0	1	0	0	1	2/1	D0 = $1 \ldots 2$ line display (1/16 duty) D0 = 0 ... 1 line display ($1 / 8$ duty)
SET CGRAM ADDRESS	0	0	1	0	0	0	1	0	(LOWER ADDRESS)				Upper address fixed at OH
SET CGRAM DATA	0	0	1	0	0	1	0 (CGRAM DATA)	(CGRAM DATA)					
SET CURSOR ADDRESS	0	0	1	0	1	2nd/1st (N DIGIT-1)							D6 = 1 ... 2nd line N digit address D6 = $0 \ldots$ 1st line N digit address
SET CHARACTER CODE	0	0	1	1	(CHARACTER CODE)								
BUSY FLAG CHECK	0	1	0	0	BF	*	*	*	BF	*	*	*	High impedance

Write Commands

SET CURSOR DIRECTION

AO = 0

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	D

Sets the way in which the cursor address register changes as character data is written to the SED1200 by the CPU, and hence the direction of cursor movement.
$\mathrm{D}=0$: Address register increment direction
$\mathrm{D}=1:$ Address register decrement direction

CURSOR ADDRESS -1/+1

AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	1	D

Adds one to, or subtracts one from, the current contents of the cursor address register, and hence moves the cursor.
$\mathrm{D}=0:$ ADDRESS $=$ ADDRESS +1
$\mathrm{D}=1:$ ADDRESS $=$ ADDRESS -1

CURSOR FONT SELECT

AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	0	D

$\mathrm{D}=0$: Underline cursor
$\mathrm{D}=1$: All dots blinking

CURSOR BLINK ON/OFF

$A 0=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	1	D

Controls flashing of the underline cursor.
$\mathrm{D}=0$: Flashing stopped
$\mathrm{D}=1$: Cursor flashing

DISPLAY ON/OFF

AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	D

$\mathrm{D}=0$: Display Blanked
$\mathrm{D}=1$: Display on
Note: This command does not affect the contents of the display data RAM.

CURSOR ON/OFF

$A 0=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	1	D

Controls the display of the cursor.
$\mathrm{D}=0$: Cursor off.
$\mathrm{D}=1$: Cursor on.

SYSTEM RESET

A0 $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0	0

Initializes the SED1200 to the following defaults.

1. CURSOR DIRECTION: Increment
2. CURSOR FONT: Underline
3. CURSOR BLINK: Off
4. DISPLAY: Off
5. CURSOR: Off
6. LINE SELECT: One line display
7. CURSOR ADDRESS: Address 0 (Line 1, character 0)

Note: SYSTEM RESET does not affect the contents of the display data RAM, or the CGRAM.

LINE SELECT

AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	1	D

Selects the number of displayed lines, and hence the LCD drive duty cycle.
$\mathrm{D}=0: 1$ line display ($1 / 8$ duty cycle)
$\mathrm{D}=1: 2$ line display ($1 / 16$ duty cycle)
Note: The number of lines which can be displayed depends on the LCD panel used.

SET CURSOR ADDRESS

$$
A 0=0
$$

D7	D6	D5	D4	D3	D2	D1	D0
1	L	P5	P4	P3	P2	P1	P0

Presets the contents of the cursor address register, and hence the position of the cursor.
$\mathrm{L}=0$: Line 1 select
$\mathrm{L}=1$: Line 2 select
P5-P0: Position of character in selected line.

SET CHARACTER CODE

$A 0=1$

D7	$\mathbf{D} 6$	$\mathbf{D 5}$	$\mathbf{D} 4$	$\mathbf{D} 3$	$\mathbf{D} 2$	$\mathbf{D} 1$	$\mathbf{D} 0$
C 7	C 6	C 5	C 4	C 3	C 2	C 1	C 0

Writes the character code given by $\mathrm{C} 7-\mathrm{C} 0$ into the character data RAM at the location pointed to by the contents of the cursor address register. The contents of the cursor address register are then modified as specified by the last SET CURSOR DIRECTION instruction.

SET CGRAM ADDRESS

AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	${ }^{*}$	${ }^{*}$	A 1	A 0

Presets the contents of the CGRAM address register to the position of one of the four user definable characters. The address is specified by A 1 and A 0 .

SET CGRAM DATA

Loads the bit pattern D4-D0 into the CGRAM location specified by the current contents of the CGRAM address register. The contents of the CGRAM Address Register are incremented following each write of a SET CGRAM DATA instruction by the CPU .
$A 0=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	D4	D3	D2	D1	D0

See section 4.3, Loading CGRAM.

Read Commands
 BUSY FLAG CHECK

Reading yields the status of the SED1200F.
AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
BF	${ }^{*}$	${ }^{*}$	${ }^{*}$	BF	${ }^{*}$	${ }^{*}$	${ }^{*}$

BF = 0: SED1200 READY
BF = 1: SED1200 BUSY
Bits D2-D0 are tristate during reads of the Busy Flag.

Electrical Specifications

DC Characteristics

VDD $=5 \mathrm{~V}$

Parameter	Symbol	Condition		Rating			Unit	Pin	
				min	typ	max			
Logic supply voltage	VDD			4.5	5.0	5.5	V	VDD	
Liquid crystal display supply voltage	VLCD			Vdo-5.5	-	VdD-3.5	V	VLCD	
Oscillator feedback resistor	Rf	$\mathrm{V} D \mathrm{D}=5.0$	fosc $=100 \mathrm{kHz}$	240	310	380	k Ω	XG, XD	
Operating frequency (1) oscillator or external clock frequency	fosc	$\mathrm{V} D \mathrm{D}=4.5$ to 5.5 V		-	100	300	kHz	XG, XD	
Operating frequency (2)	Φ	$\mathrm{VDD}=4.5$ to 5.5 V		-	-	3.2	MHz	Φ	
External clock duty		$\mathrm{VDD}=4.5$ to 5.5 V		45	50	55	\%	XG, Φ	
External clock rise time	tr	VDD $=4.5$ to 5.5 V		-	-	50	ns	XG, Φ	
External clock fall time	tf_{f}	$\mathrm{V} D \mathrm{D}=4.5$ to 5.5 V		-	-	50	ns	XG, Φ	
H-level input voltage (1)	$\mathrm{V}_{\mathbf{H} 1}$	$\mathrm{V} D \mathrm{D}=4.5$ to 5.5 V		2.0	-	VDD	V	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$,	
L-level input voltage (1)	VIL1	$\mathrm{VDD}=4.5$ to 5.5 V		0	-	0.8	V	DB0 to DB3, Φ	
H-level input voltage (2)	VIH2	$\mathrm{VDD}=4.5$ to 5.5 V		0.8 VdD	Vdo	Vod	V		
L-level input voltage (2)	VIL2	$\mathrm{VDD}=4.5$ to 5.5 V		0	0	0.2 VdD	V	Xa	
H-level input leakage current	ILIH	$\mathrm{VDD}=5.5 \mathrm{~V}, \mathrm{VIH}=5.5 \mathrm{~V}$		-	-	\|-1.0		$\mu \mathrm{A}$	Ф, $\mathrm{XG}_{\text {, }}$
L-level input leakage current	ILIL	$\mathrm{VDD}=5.5 \mathrm{~V}, \mathrm{VIL}=0 \mathrm{~V}$		-	-	1.0	$\mu \mathrm{A}$	DB0 to DB3	
Input pull-up current	IIPU	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}, \mathrm{~V}$ IL $=0 \mathrm{~V}$		3.0	10	30	$\mu \mathrm{A}$	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{AO}$	
H-level output current	IOH	$\mathrm{V} \mathrm{DD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{VOH}=2.4 \mathrm{~V}$		\|-1.0		-	-	mA	DB3
L-level output current	loL	$\mathrm{V} \mathrm{DD}=5.5 \mathrm{~V}, \mathrm{VOL}=0.4 \mathrm{~V}$		1.6	-	-	mA		
Common driver output current (1)	Іон	Vod level	$\mathrm{VDD}=4.5 \mathrm{~V}$ V LCD $=1.0 \mathrm{~V}$ Voltage-divider resistor in low impedance state. 1/16 duty 0.5 V voltage drop Measured on one pin with other pins open circuit.	\|-20		-	-	$\mu \mathrm{A}$	COM1 to COM16
Common driver output current (2)	IoL	VLCD level		20	-	-	$\mu \mathrm{A}$	COM1 to COM16	
Common driver output current (3)	IoL	VL1 level		\| ± 8 \|	-	-	$\mu \mathrm{A}$	COM1 to COM16	
Common driver output current (4)	loL	VL4 level		$\| \pm 8\|$	-	-	$\mu \mathrm{A}$	COM1 to COM16	
Segment driver output current (1)	Іон	Vod level		\|-12		-	-	$\mu \mathrm{A}$	SEG1 to SEG50
Segment driver output current (2)	loL	VLCD level		12	-	-	$\mu \mathrm{A}$	SEG1 to SEG50	
Segment driver output current (3)	IoL	VL2 level		± 4 \|	-	-	$\mu \mathrm{A}$	SEG1 to SEG50	
Segment driver output current (4)	IoL	VL3 level		\| ± 4 \|	-	-	$\mu \mathrm{A}$	SEG1 to SEG50	
Voltage-divider resistor (1)	Rd1	Normal conditions		30	130	300	$\mathrm{k} \Omega$		
Voltage-divider resistor (2)	Rd2	Low impedance state		3.0	13	30	k Ω		
Voltage-divider resistor low impedance duty	tRd1/trd2	1/8 Duty		-	11/400	-	-		
		1/16 Duty		-	11/200	-	-		
Command execution time	tcomd	From WR rising edge to the end of internal processing		-	-	$\begin{gathered} \hline 16 / \Phi \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	$\mu \mathrm{s}$		
Average operating current	IDD	$\begin{aligned} & \mathrm{V} \mathrm{VD}=5.0 \mathrm{~V}, \mathrm{VLCD}=0 \mathrm{~V}, \\ & \text { fosc }=100 \mathrm{kHz}, \\ & \Phi=1 \mathrm{MHz}, \\ & \overline{\mathrm{CS}}=\overline{\mathrm{RD}}=\overline{\mathrm{WR}}=\mathrm{A} 0=5.0 \mathrm{~V}, \\ & \text { output open } \end{aligned}$		-	80	150	$\mu \mathrm{A}$	Vdo	

VDD $=3 \mathrm{~V}$

Parameter	Symbol	Condition		$\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-10$ to $70^{\circ} \mathrm{C}$					
				Rating			Unit	Pin	
				min	typ	max			
Logic supply voltage	VDD			2.5	3.5	4.5	V	VDD	
Liquid crystal display supply voltage	V LCD			Vdd-5.5	-	Vdd-3.5	V	VLCD	
Oscillator feedback resistor	Rf_{f}	$V \mathrm{DD}=3$.	V , fosc $=100 \mathrm{kHz}$	210	290	370	$\mathrm{k} \Omega$	XG, XD	
Operating frequency (1) oscillator or external clock frequency	fosc	$\mathrm{V} D \mathrm{D}=2.5 \mathrm{~V}$		-	-	300	kHz	Xg, Xd	
Operating frequency (2)	Φ	$\mathrm{VDD}=2.5 \mathrm{~V}$		-	-	1.0	MHz	Φ	
External clock duty		$\mathrm{VDD}=2.5 \mathrm{v}$		-	50	-	\%	OSC1, Φ	
External clock rise time	tr	$\mathrm{VDD}=2.5 \mathrm{~V}$		-	-	50	ns	OSC1, Φ	
External clock fall time	t_{f}	$\mathrm{VDD}=2.5 \mathrm{~V}$		-	-	50	ns	OSC1, Φ	
H-level input voltage (1)	VIH1	$\mathrm{VDD}=2.5 \mathrm{~V}$		0.8 VDD	-	VDD	V	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}$, DB0 to DB3, Ф	
L-level input voltage (1)	VIL1	$\mathrm{VDD}=2.5 \mathrm{~V}$		0	-	0.2 Vdd	V		
H-level input voltage (2)	VIH2	$\mathrm{V} D \mathrm{~d}=2.5 \mathrm{~V}$		0.8 VDD	-	-	V	XG	
L-level input voltabe (2)	VIL2	$\mathrm{VDD}=2.5 \mathrm{~V}$		-	-	0.2 Vdd	V		
H-level input leakage current	ILIH	$\mathrm{VDD}=4.5 \mathrm{~V}$		-	-	\|-1.0		$\mu \mathrm{A}$	$\begin{gathered} \Phi, X_{G} \\ \mathrm{DB} 0 \text { to } \mathrm{DB} 3 \end{gathered}$
L-level input leakage current	ILIL	$\mathrm{VDD}=4.5 \mathrm{~V}$		-	-	1.0	$\mu \mathrm{A}$		
Input pull-up current	IIPU	VdD $=3.5 \mathrm{~V}$		1.0	4.0	15	$\mu \mathrm{A}$	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{AO}$	
H-level output current	IOH	$\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{VOH}=2.0 \mathrm{~V}$		200	-	-	$\mu \mathrm{A}$	DB3	
L-level output current	loL	$\mathrm{VdD}=2.5 \mathrm{~V}, \mathrm{Vol}=0.5 \mathrm{~V}$		200	-	-	$\mu \mathrm{A}$		
Common driver output current (1)	IOH	Vdo level	Vdd-VLcd $=3.5 \mathrm{~V}$ Voltage-divider resistor in low impedance state. 1/16 duty 0.5 V voltage drop Measured on one pin with other pins open circuit.	\|-20		-	-	$\mu \mathrm{A}$	COM1 to COM16
Common driver output current (2)	IoL	VLcd level		20	-	-	$\mu \mathrm{A}$		
Common driver output current (3)	IoL	VL1 level		\| ± 8 \|	-	-	$\mu \mathrm{A}$		
Common driver output current (4)	IoL	VL4 level		\| ± 8 \|	-	-	$\mu \mathrm{A}$		
Segment drivrer output current (1)	Іон	Vdo level		\|-12		-	-	$\mu \mathrm{A}$	SEG1 to SEG50
Segment drivrer output current (2)	IoL	VLcd level		12	-	-	$\mu \mathrm{A}$		
Segment drivrer output current (3)	IoL	VL2 level		$\pm \pm 4 \mid$	-	-	$\mu \mathrm{A}$		
Segment drivrer output current (4)	IoL	VL3 level		± 4 \|	-	-	$\mu \mathrm{A}$		
Voltage-divider resistor (1)	Rd1	Normal conditions		-	130	-	k Ω		
Voltage-divider resistor (2)	Rd2	Low impedance state		-	13	-	k Ω		
Voltage-divider resistor low impedance duty	tRd1/tRd2	1/8 Duty		-	11/400	-	-		
		1/16 Duty		-	11/200	-	-		
Command execution time	tcomd	From $\overline{W R}$ rise time to the end of internal processing		-	-	$\begin{gathered} \hline 16 / \Phi \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	$\mu \mathrm{s}$		
Average operating current	IdD	$\begin{aligned} & \text { VDD }-\mathrm{VSS}=3.5 \mathrm{~V} \\ & \mathrm{VDD}-\mathrm{V} L C D=1.5 \mathrm{~V} \\ & \text { fosc }=100 \mathrm{kHz}, \Phi=500 \mathrm{kHz} \\ & \overline{\mathrm{CS}}=\overline{\mathrm{RD}}=\overline{\mathrm{WR}}=\mathrm{A} 0=\mathrm{VDD}, \\ & \text { output open } \end{aligned}$		-	60	-	$\mu \mathrm{A}$	VDD	

AC Characteristics

MPU Read Timing

VDD $=4.5$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-10$ to $70^{\circ} \mathrm{C}$.

Parameter	Symbol	Rating			Unit
		min	typ	max	
Setup time for $\mathrm{A} 0 \rightarrow \overline{\mathrm{RD}}$	tar	0	-	-	ns
Setup time for $\overline{\mathrm{CS}} \rightarrow \overline{\mathrm{RD}}$	tcr	0	-	-	ns
$\overline{\mathrm{RD}}$ delay output time	trd	-	-	250	ns
Hold time for $\overline{\mathrm{RD}} \rightarrow \mathrm{A0}$	tra	20	-	-	ns
Hold time for $\overline{\mathrm{RD}} \rightarrow \overline{\mathrm{CS}}$	trc	20	-	-	ns
Data hold time	tri	10	-	-	ns
Read pulsewidth	tRP	350	-	-	ns
Input fall time	tf	-	-	50	ns
Input rise time	tr	-	-	50	ns

Note: Load on pin DB3 is $\mathrm{CL}=100 \mathrm{pF}$.
$\mathrm{V} D \mathrm{D}=2.5$ to $4.5 \mathrm{~V}, \mathrm{Ta}=-10$ to $70^{\circ} \mathrm{C}$.

Parameter	Symbol	Rating			Unit
		min	typ	max	
Setup time for $\mathrm{AO} \rightarrow \overline{\mathrm{RD}}$	tar	0	-	-	ns
Setup time for $\overline{\mathrm{CS}} \rightarrow \overline{\mathrm{RD}}$	tcr	0	-	-	ns
$\overline{\mathrm{RD}}$ delay output time	trd	-	-	350	ns
Hold time for $\overline{\mathrm{RD}} \rightarrow \mathrm{A} 0$	tra	0	-	-	ns
Hold time for $\overline{\mathrm{RD}} \rightarrow \overline{\mathrm{CS}}$	trc	0	-	-	ns
Data hold time	trH	10	-	-	ns
Read pulsewidth	trP	400	-	-	ns
Input fall time	tf	-	-	50	ns
Input rise time	tr	-	-	50	ns

Note: Load on pin DB3 is $\mathrm{CL}=100 \mathrm{pF}$.

MPU Write Timing

$V D D=5 \mathrm{~V}, \mathrm{Ta}=-10$ to $70^{\circ} \mathrm{C}$.

Parameter	Symbol	Rating			Unit
		min	typ	max	
A0 \rightarrow WR setup time	taw	0	-	-	ns
$\overline{\mathrm{CS}} \rightarrow \overline{\mathrm{WR}}$ setup time	tcw	0	-	-	ns
Data setup time	tDs	120	-	-	ns
$\overline{\mathrm{WR}} \rightarrow \mathrm{A} 0$ hold time	twa	20	-	-	ns
$\overline{\mathrm{WR}} \rightarrow \overline{\mathrm{CS}}$ hold time	twc	20	-	-	ns
Data hold time	toh	20	-	-	ns
Write pulsewidth	twp	200	-	-	ns
Upper write pulse rising edge to lower write pulse falling edge time.	tw1w2	200	-	-	ns
Lower write pulse rising edge to upper write pulse falling edge time.	twcyc	$\begin{gathered} 16 / \Phi \\ (\mathrm{MHz}) \end{gathered}$	-	-	ns
Input fall time	tf	-	-	50	ns
Input rise time	tr	-	-	50	ns

VDD $=3 \mathrm{~V}, \mathrm{Ta}=-10$ to $70^{\circ} \mathrm{C}$.

Parameter	Symbol	Rating			Unit
		min	typ	max	
A0 \rightarrow WR setup time	taw	0	-	-	ns
$\overline{\overline{C S}} \rightarrow \overline{\text { WR }}$ setup time	tcw	0	-	-	ns
Data setup time	tos	120	-	-	ns
$\overline{\mathrm{WR}} \rightarrow \mathrm{A} 0$ hold time	twa	0	-	-	ns
$\overline{\mathrm{WR}} \rightarrow \overline{\mathrm{CS}}$ hold time	twc	0	-	-	ns
Data hold time	toh	100	-	-	ns
Write pulsewidth	twp	200	-	-	ns
Upper write pulse rising edge to lower write pulse falling edge time.	twiw2	200	-	-	ns
Lower write pulse rising edge to upper write pulse falling edge time.	twcyc	$\begin{gathered} 16 / \Phi \\ (\mathrm{MHz}) \end{gathered}$	-	-	ns
Input fall time	tf	-	-	50	ns
Input rise time	tr	-	-	50	ns

OPERATION

Data Input/Output

Because the command codes are 8-bits wide and the SED1200's data bus is only 4-bits wide, the command codes must be split into two nibbles (4-bits), which are written separately.

Nibble	High-order				Low-order			
Data Bus Bit	D3	D2	D1	D0	D3	D2	D1	D0
Command Bit	D7	D6	D5	D4	D3	D2	D1	D0

The high-order nibble is written first, and is latched internally by the SED1200. When the low-order nibble is written, the eight bits of data are shifted into either the
character registers or the command register, depending on the level of A0 during the low-nibble write cycle. When the busy flag is read, only one read cycle is required.
New commands must not be written to the SED1200 if the device is executing one currently, so the busy flag should be checked before commands are written. It is not necessary to check the busy flag between writes of the upper and lower nibbles of commands. If the busy flag is not going to be checked between writes of individual commands then the MPU must wait long enough to allow for command execution to complete. The maximum time taken by the SED1200 to execute a command is $16 /$ Φ, where Φ is the system clock frequency.

System Initialization

Figure 1 is a flow chart of a possible SED1200 initialization sequence. Note that busy flag checks, and busy/wait loops have been omitted for the sake of brevity.

Figure 1. Initialization Flow Chart

Loading CGRAM

The character generator RAM is loaded with a character bit pattern using a combination of one SET CGRAM ADDRESS command and eight SET CGRAM DATA commands. For example, to load the character shown in figure 2 into the area of CGRAM corresponding to character code 01 H , the sequence shown in table 3 is used.

Figure 2. User Defined Character

TABLE 3. Loading User Defined Character

Step	A0	$\overline{\text { WR }}$	Data	Action
1	0	0	21 H	Set address of CGRAM 01
2	0	0	40 H	Data for Row 1
3	0	0	41 H	Data for Row 2
4	0	0	45 H	Data for Row 3
5	0	0	49 H	Data for Row 4
6	0	0	5 FH	Data for Row 5
7	0	0	48 H	Data for Row 6
8	0	0	44 H	Data for Row 7
9	0	0	40 H	Data for Row 8

Notes: 1. These steps do not include busy flag checks.
2. Row 8 maybe used by the underline cursor.

Mechanical Specifications

SED1200F Package Dimensions

SED1200D Package Dimensions

Chip size: $\quad 5.86 \mathrm{~mm} \times 3.41 \mathrm{~mm}$
Chip thickness: $\quad 0.40 \mathrm{~mm} \pm 0.03 \mathrm{~mm}$
Pad size: $0.90 \mathrm{~mm} \times 0.90 \mathrm{~mm}$ Pad pitch: 0.19 mm

Pad		$\mathbf{X}(\mu \mathrm{m})$	$\mathrm{Y}(\mu \mathrm{m})$
Number	Name		
1	SEG17	2123	1552
2	SEG16	1932	1552
3	SEG15	1742	1552
4	SEG14	1551	1552
5	SEG13	1361	1552
6	SEG12	1170	1552
7	SEG11	980	1552
8	SEG10	789	1552
9	SEG9	599	1552
10	SEG8	408	1552
11	SEG7	218	1552
12	SEG6	27	1552
13	SEG5	-163	1552
14	SEG4	-354	1552
15	SEG3	-544	1552
16	SEG2	-735	1552
17	SEG1	-925	1552
18	COM1	-1116	1552
19	COM2	-1306	1552
20	COM3	-1497	1552
21	COM4	-1687	1552
22	COM5	-1878	1552
23	COM6	-2068	1552
24	COM7	-2259	1552
25	COM8	-2778	1429
26	A0	-2778	1238
27	$\overline{\mathrm{CS}}$	-2778	1048
28	$\overline{\mathrm{RD}}$	-2778	857
29	$\overline{\mathrm{WR}}$	-2778	667
30	Φ	-2778	476
31	OSC2	-2778	286
32	OSC1	-2778	95
33	D3	-2778	-95
34	D2	-2778	-286
35	D1	-2778	-476
36	D0	-2778	-667
37	Vss	-2778	-857
38	VLCD	-2778	-1048
39	VDD	-2778	-1238
40	COM9	-2778	-1429

Pad		X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$
Number	Name		
41	COM10	-2220	-1552
42	COM11	-2029	-1552
43	COM12	-1839	-1552
44	COM13	-1648	-1552
45	COM14	-1458	-1552
46	COM15	-1267	-1552
47	COM16	-1077	-1552
48	SEG50	-886	-1552
49	SEG49	-696	-1552
50	SEG48	-505	-1552
51	SEG47	-315	-1552
52	SEG46	-124	-1552
53	SEG45	66	-1552
54	SEG44	257	-1552
55	SEG43	447	-1552
56	SEG42	638	-1552
57	SEG41	828	-1552
58	SEG40	1019	-1552
59	SEG39	1209	-1552
60	SEG38	1400	-1552
61	SEG37	1590	-1552
62	SEG36	1781	-1552
63	SEG35	1971	-1552
64	SEG34	2162	-1552
65	SEG33	2777	-1385
66	SEG32	2777	-1195
67	SEG31	2777	-1004
68	SEG30	2777	-814
69	SEG29	2777	-623
70	SEG28	2777	-433
71	SEG27	2777	-242
72	SEG26	2777	-52
73	SEG25	2777	139
74	SEG24	2777	329
75	SEG23	2777	520
76	SEG22	2777	710
77	SEG21	2777	901
78	SEG20	2777	1091
79	SEG19	2777	1282
80	SEG18	2777	1472

APPLICATION NOTES

Display Oscillator

The SED1200 has an internal oscillator to generate the timing signals required for the LCD display.
If the internal oscillator is used, connect the feedback resistor Rf as shown in figure 3. The feedback resistor leads must be kept as short as possible to reduce stray capacitance and the possibility of crosstalk between the oscillator and adjoining signals.

Figure 3. Using the Internal Oscillator
If an external clock is used, connect it to OSC1, as shown
in figure 4.

Figure 4. Using an External Clock
The relationship between the oscillator frequency and the LCD drive frame frequency is
$\mathrm{fFR}=\mathrm{fOSC} / 1600$
For example if $\mathrm{fOSC}=100 \mathrm{kHz}, \mathrm{fFR}=62.5 \mathrm{~Hz}$

Command Clock (Φ)

When the system MPU issues a command to the SED1200, the timing for the execution of the command is derived from Φ, the command clock. This would normally be the system MPU clock.
The maximum execution time for a command is $16 / \Phi$. For example if $\Phi=1 \mathrm{MHz}$, the maximum execution time for a command is $16 \mu \mathrm{~s}$.

LCD Drive Waveforms

The SED1200 has an internal low source-impedance voltage-driver network, of the form shown in figure 5. The switches SWd are closed to switch the segment data.

Figure 5. Internal Voltage Divider

- LCD Drive Waveform - 1 Line Display (1/8 Duty Cycle)

- LCD Drive Waveform - 2 Line Display (1/16 Duty Cycle)

LCD Display Interface

- 10 Characters on 1 line ($1 / 8$ duty)

- 10 Characters on 2 lines ($1 / 16$ duty)

CPU Interface

- 4-bits CPU with internal I/O port

- 8-bit CPU with external I/O port

- Interface with Z-80A type CPU

- Interface with 8085 A type CPU

APPENDIX A：CHARACTER CODES AND FONTS

SED1200FoA／SED1200D0A

		Lower 4 bit（Do to D3）of Character Code（Hexadecimal）															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	CGRAM AREA 5×8 DOTS															
	2			！					部			■!	－		－ 1 ［10	ㅌ⿴囗十介	
	3														－ －		
	4													曾			
	5				\square								n n n n			\square^{\square}	－14nan
	6	EII	man						표표		$\begin{gathered} ■ \\ \text { ■ } \\ \text { ■ } \end{gathered}$	$\square_{\square}^{\square}$	\mid		브ㄴㅡㅡㅂ	${ }^{-14}$	
	7			\qquad			量	…	景胃昌		！ng	－				－■	－
	A				－	\square	톱	mang		－＋ －$_{\text {－}}$			-	暗部	ner		
	B	－															
	C										昌量						■■!
	D			■!												$\square \square_{\square}^{\square}$	

SED1200Fob/SED1200Dob

APPENDIX B: I/O TERMINAL STRUCTURE

- Input Terminal (No pull-up)

Terminals used: Φ, OSC1

- Input Terminal (No pull-up) Terminals used: D0 to D2

- Output Terminal (No pull-up)

Terminals used: OSC2

- Input Terminal (Pull-up)

Terminals used: $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A} 0$

- I/O Terminal (No pull-up)

Terminals used: D3

- LCD Drive Terminal (No pull-up)

Terminals used: SEG1 to SEG50, COM1 to COM16

SED1210 LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW 3-1
FEATURES 3-1
BLOCK DIAGRAM 3-2
PINOUT 3-2
PIN DESCRIPTION 3-4
COMMAND DESCRIPTION 3-4
SPECIFICATIONS 3-6
OPERATION 3-14
APPLICATION NOTES 3-16
APPENDIX A: CHARACTER CODES AND FONTS 3-22
APPENDIX B: I/O TERMINAL STRUCTURE 3-24

OVERVIEW

The SED1210F is a Liquid Crystal Display (LCD) character display controller/driver, capable of directly driving displays of up to 16 characters. If an external expansion driver is used, displays of up to 40 characters can be generated.
The SED1210F has an internal character generator (CG) consisting of 160 JIS ASCII characters in ROM and four user definable characters in RAM. The internal CG, combined with a versatile set of cursor and display control commands, means that the system CPU is only responsible for the display data and commands, and not for the LCD display itself.

FEATURES

- Internal display RAM to hold 40 8-bit character codes.
- Internal character generator
- CGROM: 160 JIS ASCII characters.
- CGRAM: 4 user programmable 5×8 pixel characters
- Font: $\quad 5 \times 7$ pixel characters plus the underline cursor, of 5×8 pixel characters alone.
- JIS character set using SED1210F0A
- ASCII character set using SED1210F0B
- Internal LCD driver circuitry
- 40 segment driver outputs
- 16 common driver outputs
- Total size: 2 lines of 20 characters each (maximum). One line of 40 characters (using an SED1181F for external expansion)
- CPU interface
- 8-bit CPU data bus
- 13 display control commands
- Low external component count
- Built in RC oscillator (using one external feedback resistor)
- Built in LCD driver voltage-divider network.
- Implemented using low power CMOS technology
- TTL compatible CPU interface
- Power supply
- Logic: 2.5 V to 5.5 V
- LCD: 3.5 V to 5.5 V
- 80-pin QFP package (plastic)

BLOCK DIAGRAM

PINOUT

TABLE 1. SED1210F Pinout

No.	NAME	No.	NAME	No.	NAME	No.	NAME
1	SEG17	21	COM4	41	COM10	61	SEG37
2	SEG16	22	COM5	42	COM11	62	SEG36
3	SEG15	23	COM6	43	COM12	63	SEG35
4	SEG14	24	COM7	44	COM13	64	SEG34
5	SEG13	25	COM8	45	COM14	65	SEG33
6	SEG12	26	A0	46	COM15	66	SEG32
7	SEG11	27	$\overline{\text { CS }}$	47	COM16	67	SEG31
8	SEG10	28	$\overline{\text { RD }}$	48	SO	68	SEG30
9	SEG9	29	$\overline{\text { WR }}$	49	LP	69	SEG29
10	SEG8	30	Ф	50	SHCL	70	SEG28
11	SEG7	31	OSC2	51	FR	71	SEG27
12	SEG6	32	OSC1	52	D3	72	SEG26
13	SEG5	33	D7	53	D2	73	SEG25
14	SEG4	34	D6	54	D1	74	SEG24
15	SEG3	35	D5	55	D0	75	SEG23
16	SEG2	36	D4	56	VL2	76	SEG22
17	SEG1	37	VSS	57	VL3	77	SEG21
18	COM1	38	VLCD	58	SEG40	78	SEG20
19	COM2	39	VDD	59	SEG39	79	SEG19
20	COM3	40	COM9	60	SEG38	80	SEG18

PIN DESCRIPTION

CPU Interface

$\overline{\mathbf{C S}} \quad$ Active low chip select input.
$\overline{\mathbf{R D}} \quad$ Active low read enable input.
$\overline{W R} \quad$ Active low write strobe.
A0 Selects between instruction and display data access.
$\mathrm{A} 0=\mathrm{H}$: Display data
$\mathrm{A} 0=\mathrm{L}:$ Instruction
DB0-DB6 Active high CPU data inputs.
DB7 Active high CPU data input/output.
$\Phi \quad$ Clock input for command execution.
LCD Interface
COM1-COM16 LCD command driver outputs.
SEG1-SEG40 LCD segment driver outputs.
SO Serial segment data output
LP Latch output to segment driver
SHCL Shift clock output to segment
FR Frame output to segment driver

Oscillator
OSC1, OSC2
Terminals for the oscillator external feedback resistor, Rf. If an externally generated clock is used, it is connected to OSC1; OSC2 is left open.

Power Supply

VDD Logic power supply input
VLCD LCD power supply input
Vss System ground (0 V) input
VL2, VL3 LCD driver voltage outputs

COMMAND DESCRIPTION

Command Summary

TABLE 2. SED1210F Command Summary

COMMAND NAME	$\overline{\text { CS }}$	$\overline{W R}$	$\overline{\mathrm{RD}}$	$\overline{\text { A0 }}$	D7	D6	D5	D4	D3	D2	D1	D0	REMARKS
SET CURSOR DIRECTION	0	0	1	0	0	0	0	0	0	1	0	D/I	D0 = $1 \ldots$ Decrement D0 $=0 \ldots$ Increment
CURSOR ADDRESS $-1 /+1$	0	0	1	0	0	0	0	0	0	1	1	-1/+1	$\begin{array}{ll} \hline \text { D0 }=1 \ldots \text { Cursor address }-1 \\ \text { D0 }=0 \ldots \text { Cursor address }+1 \end{array}$
CURSOR FONT SELECT	0	0	1	0	0	0	0	0	1	0	0	A/U	D0 $=1 \ldots$ All dots blinking D0 $=0 \ldots$ Underline
CURSOR BLINK ON/OFF	0	0	1	0	0	0	0	0	1	0	1	ON/OFF	$\begin{aligned} & \text { D0 }=1 \ldots \text { ON } \\ & \text { D0 }=0 \ldots \text { OFF } \end{aligned}$
DISPLAY ON/OFF	0	0	1	0	0	0	0	0	1	1	0	ON/OFF	$\begin{aligned} & \mathrm{DO} 0=1 \ldots \mathrm{ON} \\ & \mathrm{D} 0=0 \ldots \mathrm{OFF} \end{aligned}$
CURSOR ON/OFF	0	0	1	0	0	0	0	0	1	1	1	ON/OFF	$\begin{aligned} & \mathrm{D} 0=1 \ldots \mathrm{ON} \\ & \mathrm{D} 0=0 \ldots \mathrm{OFF} \end{aligned}$
SYSTEM RESET	0	0	1	0	0	0	0	1	0	0	0	0	DATA RAM \& CGRAM are not affected
LINE SELECT	0	0	1	0	0	0	0	1	0	0	1	2/1	$\begin{aligned} & \text { D0 }=1 \ldots 2 \text { line display (} 1 / 16 \text { duty) } \\ & \text { D0 }=0 \ldots .1 \text { line display (} 1 / 8 \text { duty } \end{aligned}$
SET CGRAM ADDRESS	0	0	1	0	0	0	1	0	(LOWER ADDRESS)				Upper address fixed at OH
SET CGRAM DATA	0	0	1	0	0	1	0	(CGRAM DATA)					
SET CURSOR ADDRESS	0	0	1	0	1	2nd/1st (N DIGIT-1)							D6 = $1 \ldots$ 2nd line N digit address D6 = 0 ... 1st line N digit address
SET CHARACTER CODE	0	0	1	1	(CHARACTER CODE)								
BUSY FLAG CHECK	0	1	0	0	BF	*	*	*		*	*	*	* High impedance

Write Commands

SET CURSOR DIRECTION

$A 0=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	D

Sets the way in which the cursor address register changes as character data is written to the SED1210F by the CPU, and hence the direction of cursor movement.
$\mathrm{D}=0$: Address register increment direction
$\mathrm{D}=1:$ Address register decrement direction

CURSOR ADDRESS -1/+1

AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	1	D

Adds one to, or subtracts one from, the current contents of the cursor address register, and hence moves the cursor.
$\mathrm{D}=0:$ ADDRESS $=$ ADDRESS +1
$\mathrm{D}=1:$ ADDRESS $=$ ADDRESS -1

CURSOR FONT SELECT

AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	0	D

$\mathrm{D}=0$: Underline cursor
$\mathrm{D}=1$: All dots blinking

CURSOR BLINK ON/OFF

$A 0=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	1	D

Controls flashing of the underline cursor.
$\mathrm{D}=0$: Blinking stopped
$\mathrm{D}=1$: Cursor blinking

DISPLAY ON/OFF

AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	D

$\mathrm{D}=0$: Display off
$\mathrm{D}=1$: Display on
Note: This command does not affect the contents of the display data RAM.

CURSOR ON/OFF

$A 0=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	1	D

Controls the display of the cursor.
$\mathrm{D}=0$: Cursor off.
$\mathrm{D}=1$: Cursor on.

SYSTEM RESET

A0 $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0	0

Initializes the SED1210F to the following defaults.
CURSOR DIRECTION: Increment
CURSOR FONT: Underline
CURSOR BLINK: Off
DISPLAY: Off
CURSOR: Off
LINE SELECT: One line display
CURSOR ADDRESS: Address 0 (Line 1, character 0)
Note: SYSTEM RESET does not affect the contents of the display data RAM, or the CGRAM.

LINE SELECT

AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	1	D

Selects the number of displayed lines, and hence the LCD drive duty cycle.
$\mathrm{D}=0: 1$ line display ($1 / 8$ duty cycle)
$\mathrm{D}=1: 2$ line display ($1 / 16$ duty cycle)
Note: The number of lines which can be displayed depends on the LCD panel used.

SET CURSOR ADDRESS

$A 0=0$

D7	D6	D5	D4	D3	D2	D1	D0
1	L	P 5	P 4	P 3	P 2	P 1	P 0

Presets the contents of the cursor address register, and hence the position of the cursor.
$\mathrm{L}=0$: Line 1 select
$\mathrm{L}=1$: Line 2 select
P5-P0: Position of character in selected line.

SET CHARACTER CODE

$A 0=1$

D7	$\mathbf{D} 6$	$\mathbf{D 5}$	$\mathbf{D} 4$	$\mathbf{D} 3$	$\mathbf{D} 2$	$\mathbf{D} 1$	$\mathbf{D} 0$
C 7	C 6	C 5	C 4	C 3	C 2	C 1	C 0

Writes the character code given by $\mathrm{C} 7-\mathrm{C} 0$ into the character data RAM at the location pointed to by the cursor address register. The contents of the cursor address register are then modified as specified by the last SET CURSOR DIRECTION instruction.

SET CGRAM ADDRESS

$$
\overline{W R}=0, A 0=0
$$

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	${ }^{*}$	${ }^{*}$	A 1	A 0

Presets the contents of the CGRAM address register to the position of one of the four user definable characters. The address is specified by A 1 and A 0 .

SET CGRAM DATA

Loads the bit pattern D4-D0 into the CGRAM location specified by the current contents of the CGRAM address register. The contents of the CGRAM address register are incremented following each write of a SET CGRAM DATA instruction by the CPU .

AO $=0$

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	D4	D3	D2	D1	D0

See Loading CGRAMs.

Read Commands
 BUSY FLAG CHECK

Reading yields the status of the SED1210F.
$\overline{\mathrm{RD}}=0, \mathrm{~A} 0=0$

D7	D6	D5	D4	D3	D2	D1	D0
BF	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$

$\mathrm{BF}=0:$ SED1210F READY
$\mathrm{BF}=1:$ SED1210F BUSY
Bits D6-D0 are tristate during reads of the Busy Flag.

SPECIFICATIONS

Absolute Maximum Ratings

Vss $=\mathrm{GND}=0 \mathrm{~V}$ and $\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Rating	Unit
Supply voltage (1)	VDD	-0.3 to +7.0	V
Supply voltage (2)	VLCD	VDD -7.0 to $\mathrm{VDD}+0.3$	V
Input voltage	VIN	-0.3 to $\mathrm{VDD}+0.3$	V
Output voltage	Vout	-0.3 to $\mathrm{VDD}+0.3$	V
Operating temperature	Topr	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-60 to +150	${ }^{\circ} \mathrm{C}$
Soldering temperature and time	Tsol	260,10	${ }^{\circ} \mathrm{C}, \mathrm{s}$

Note: Exceeding the absolute maximum ratings can cause permanent damage to the device. Functional operation under these condition is not implied.

Electrical Specifications

DC Characteristics

$\mathrm{VDD}=5 \mathrm{~V}$

VDD $=3 \mathrm{~V}$

Parameter	Symbol	Condition		$\mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $70^{\circ} \mathrm{C}$					
				Rating			Unit	Pin	
				min	typ	max			
Liquid crystal display supply voltage	V LCD			3.5	-	5.5	V	VLCD	
Oscillator feedback resistor	Rf	VDD $=3.0$	$\mathrm{V}, \mathrm{fosc}=100 \mathrm{kHz}$	210	290	370	$\mathrm{k} \Omega$	OSC1, OSC2	
Oscillator frequency	fosc	$V \mathrm{DD}=3$.	$\mathrm{V}, \mathrm{Rf}_{\mathrm{f}}=300 \mathrm{k} \Omega$	-	100	-	kHz	OSC1, OSC2	
Operating frequency (1) oscillator or external clock frequency	fosc	$\mathrm{V} D \mathrm{D}=2.5 \mathrm{~V}$		-	-	300	kHz	OSC1	
Operating frequency (2)	Φ	$\mathrm{V} D \mathrm{D}=2.5$ to 4.5 V		-	-	1	MHz	Φ	
External clock duty		$\mathrm{V} D \mathrm{D}=2.5$ to 4.5 V		-	50	-	\%	OSC1, Φ	
External clock rise time	tr	$\mathrm{VDD}=2.5$ to 4.5 V		-	-	50	ns	OSC1, Φ	
External clock fall time	t_{f}	$\mathrm{V} D \mathrm{D}=2.5$ to 4.5 V		-	-	50	ns	OSC1, Φ	
H-level input voltage (1)	VIH1	$\mathrm{V} D \mathrm{D}=2.5$ to 4.5 V		0.8 VdD	-	-	V	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A} 0$ DB0 to DB7, Φ	
L-level input voltage (1)	VIL1	$\mathrm{VDD}=2.5$ to 4.5 V		-	-	0.2 Vdd	V		
H-level input voltage (2)	VIH2	$\mathrm{V} D \mathrm{D}=2.5$ to 4.5 V		0.8 Vdd	-	-	V	OSC1	
L-level input voltabe (2)	VIL2	$\mathrm{VDD}=2.5$ to 4.5 V		-	-	0.2 Vdd	V		
H-level input leakage current	ILIH	$\mathrm{VdD}=4.5 \mathrm{~V}$		-	-	-	$\mu \mathrm{A}$	$\Phi, \text { OSC1, }$ DB0 to DB7	
L-level input leakage current	ILIL	$\mathrm{VDD}=4.5 \mathrm{~V}$		-	-	-	$\mu \mathrm{A}$		
Input pull-up current	IIPU	V DD $=3.5 \mathrm{~V}$		-	-	-	$\mu \mathrm{A}$	$\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{AO}$	
H-level output current (1)	lOH 1	$\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{VOH}=2.0 \mathrm{~V}$		200	-	-	$\mu \mathrm{A}$	DB7	
L-level output current (1)	lol1	$\mathrm{VdD}=2.5 \mathrm{~V}, \mathrm{VoL}=0.5 \mathrm{~V}$		200	-	-	$\mu \mathrm{A}$		
H-level output current (2)	IOH2	$\mathrm{VDD}=2.5 \mathrm{~V}, \mathrm{VOH}=2.0 \mathrm{~V}$		200	-	-	$\mu \mathrm{A}$	FR, LP	
L-level output current (2)	lol2	$\mathrm{VdD}=2.5 \mathrm{~V}, \mathrm{Vol}=0.5 \mathrm{~V}$		200	-	-	$\mu \mathrm{A}$	XSCL, SO	
Common driver output current (1)	IOH	Vdo level	VDD-VLCD $=3.5 \mathrm{~V}$ Diving resistor in low impedance state. 1/16 duty 0.5 V voltage drop. Measured on one pin with other pins open circuit.	\|-20		-	-	$\mu \mathrm{A}$	COM1 to COM16
Common driver output current (2)	IoL	Vlcd level		20	-	-	$\mu \mathrm{A}$		
Common driver output current (3)	loL	VL1 level		$\pm \pm 8 \mid$	-	-	$\mu \mathrm{A}$		
Common driver output current (4)	loL	VL4 level		\| ± 8 \|	-	-	$\mu \mathrm{A}$		
Segment drivrer output current (1)	IOH	Vdo level		\|-12		-	-	$\mu \mathrm{A}$	
Segment drivrer output current (2)	IoL	VLcd level		12	-	-	$\mu \mathrm{A}$	EG1 to SEG40	
Segment drivrer output current (3)	IoL	VL2 level		\| ± 4 \|	-	-	$\mu \mathrm{A}$	EG1 to SE	
Segment drivrer output current (4)	IoL	VL3 level		$\pm \pm 4 \mid$	-	-	$\mu \mathrm{A}$		
Driver current (1)	Іон	$\begin{aligned} & \text { VDD-VLCD }=3.5 \mathrm{~V} \\ & 0.5 \mathrm{~V} \text { voltage drop } \\ & \hline \end{aligned}$		-	2	-	$\mu \mathrm{A}$	VL2, VL3	
Driver current (2)	IoL			-	2	-	$\mu \mathrm{A}$		
Voltage-divider resistor (1)	Rd1	Normal conditions		-	130	-	$\mathrm{k} \Omega$		
Voltage-divider resistor (2)	Rd2	Low impedance state		-	13	-	$\mathrm{k} \Omega$		
Voltage-divider resistor low impedance duty	tRd1/tRd2	1/8 Duty		-	11/400	-	-		
		1/16 Duty		-	11/200	-			
Command execuiton time	tcomd	From $\overline{\mathrm{WR}}$ rise time to the end of internal processing		-	-	16/Ф	$\mu \mathrm{s}$		
Average operating current	IdD	$\begin{aligned} & \text { VDD }- \text { VSS }= \\ & \text { VDD }-\mathrm{VLCD} \\ & \Phi=500 \mathrm{kl} \\ & \overline{\mathrm{CS}}=\overline{\mathrm{RD}}= \\ & \mathrm{Rf}=300 \mathrm{k} \end{aligned}$	$\begin{aligned} & \hline 3.5 \mathrm{~V} \\ & 5 \mathrm{~V} \\ & \mathrm{z} \\ & \overline{\mathrm{WR}}=\mathrm{A} 0=\mathrm{VDD} \end{aligned}$	-	60	-	$\mu \mathrm{A}$	VDD	

AC Characteristics

MPU Read Timing

VDD $=5 \mathrm{~V}, \mathrm{Ta}=-20$ to $70^{\circ} \mathrm{C}$.

Parameter	Symbol	Rating			Unit
		min	typ	max	
Setup time for $\mathrm{AO} \rightarrow \overline{\mathrm{RD}}$	tar	0	-	-	ns
Setup time for $\overline{\mathrm{CS}} \rightarrow \overline{\mathrm{RD}}$	tcr	0	-	-	ns
$\overline{\mathrm{RD}}$ delay output time*	trd	-	-	200	ns
Hold time for $\overline{\mathrm{RD}} \rightarrow \mathrm{AO}$	tra	20	-	-	ns
Hold time for $\overline{\mathrm{RD}} \rightarrow \overline{\mathrm{CS}}$	trc	20	-	-	ns
Data hold time	trH	10	-	-	ns
Read pulsewidth	trP	300	-	-	ns
Input fall time	tf	-	-	50	ns
Input rise time	tr	-	-	50	ns

Note: Load on pin DB7 is CL $=100 \mathrm{pF}$.
$V D D=3 \mathrm{~V}, \mathrm{Ta}=-20$ to $70^{\circ} \mathrm{C}$.

Parameter	Symbol	Rating			Unit
		min	typ	max	
Setup time for $\mathrm{A} 0 \rightarrow \overline{\mathrm{RD}}$	tar	0	-	-	ns
Setup time for $\overline{\mathrm{CS}} \rightarrow \overline{\mathrm{RD}}$	tcr	0	-	-	ns
$\overline{\mathrm{RD}}$ delay output time*	trd	-	-	350	ns
Hold time for $\overline{\mathrm{RD}} \rightarrow \mathrm{A0}$	tra	0	-	-	ns
Hold time for $\overline{\mathrm{RD}} \rightarrow \overline{\mathrm{CS}}$	trc	0	-	-	ns
Data hold time	trH	10	-	-	ns
Read pulsewidth	trP	400	-	-	ns
Input fall time	tf	-	-	50	ns
Input rise time	tr	-	-	50	ns

Note: Load on pin DB7 is CL $=100 \mathrm{pF}$.

MPU Write Timing

$\frac{\text { Input signal }}{(\overline{\mathrm{AO}}, \overline{\mathrm{CS}}, \overline{\mathrm{WR}},}$
DB 0 to $\mathrm{DB} 7, \varnothing)$

$V D D=5 \mathrm{~V}, \mathrm{Ta}=-20$ to $70^{\circ} \mathrm{C}$.

Parameter	Symbol	Rating			Unit
		min	typ	max	
A0 \rightarrow WR setup time	taw	0	-	-	ns
$\overline{\mathrm{CS}} \rightarrow \overline{\mathrm{WR}}$ setup time	tcw	0	-	-	ns
Data setup time	tos	120	-	-	ns
$\overline{\mathrm{WR}} \rightarrow \mathrm{AO}$ hold time	twa	20	-	-	ns
$\overline{\mathrm{WR}} \rightarrow \overline{\mathrm{CS}}$ hold time	twc	20	-	-	ns
Data hold time	tD	20	-	-	ns
Write pulsewidth	twp	200	-	-	ns
Write cycle	tweyc	16/Ф	-	-	$\mu \mathrm{s}$
Input fall time	tf	-	-	50	ns
Input rise time	tr	-	-	50	ns

$\mathrm{VDD}=3 \mathrm{~V}, \mathrm{Ta}=-20$ to $70^{\circ} \mathrm{C}$.

Parameter	Symbol	Rating			Unit
		min	typ	max	
A0 \rightarrow WR setup time	taw	0	-	-	ns
$\overline{\mathrm{CS}} \rightarrow \overline{\mathrm{WR}}$ setup time	tcw	0	-	-	ns
Data setup time	tos	120	-	-	ns
$\overline{\mathrm{WR}} \rightarrow \mathrm{A} 0$ hold time	twa	0	-	-	ns
$\overline{\mathrm{WR}} \rightarrow \overline{\mathrm{CS}}$ hold time	twc	0	-	-	ns
Data hold time	tD	100	-	-	ns
Write pulsewidth	twp	200	-	-	ns
Write cycle	tweyc	16/Ф	-	-	$\mu \mathrm{s}$
Input fall time	$\mathrm{tf}^{\text {f }}$	-	-	50	ns
Input rise time	tr	-	-	50	ns

X-driver Control Timing

VDD $=2.5$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $70^{\circ} \mathrm{C}$.

Parameter	Symbol	Rating			Unit
		min	typ	max	
Shift clock cycle	tcCL	3.3	10	-	$\mu \mathrm{s}$
Shift clock "H" pulsewidth	twHCL	1.0	-	-	$\mu \mathrm{s}$
Shift clock "L" pulsewidth	twLCL	1.0	-	-	$\mu \mathrm{s}$
Delay time for XSCL \rightarrow SO output	-	-	1	$\mu \mathrm{~s}$	
Latch pulse "H" pulsewidth	twHLP	1.0	-	-	$\mu \mathrm{s}$
Latch pulse "L" pulsewidth	twLLP	300	-	-	ns
Latch time	tLT	500	-	-	ns
Latch hold time	tLH	500	-	-	ns
Delay time for frame signal	tDFR	-		500	ns

Note: Load capacitance $\mathrm{CL}=15 \mathrm{pF}$

Mechanical Specifications

OPERATION

Data Input/Output

New commands must not be written to the SED1210F if it is currently executing the last one, so the busy flag should be checked before commands are written. If the busy flag is not going to be checked between writes of individual commands then the MPU must wait long enough to allow for command execution to complete. The maximum time taken by the SED1210F to execute a command is given by $16 / \Phi$, where Φ is the system command clock frequency.

System Initialization

Figure 1 shows a flow chart of a possible SED1210F initialization sequence. Note that busy flag checks, and busy/wait loops have been omitted for the sake of brevity.

Figure 1. SED1210F Initialization

Loading CGRAM

The character generator RAM is loaded with a character bit pattern using a combination of one SET CGRAM ADDRESS command and eight SET CGRAM DATA commands. For example, to load the character shown in figure 2 into the area of CGRAM corresponding to character code 01 H , the sequence shown below would be used.

Figure 2. User Defined Characters

Step	A0	$\overline{\text { WR }}$	Data	Action
1	0	0	21 H	Set address of CGRAM 01
2	0	0	40 H	Data for Row 1
3	0	0	41 H	Data for Row 2
4	0	0	45 H	Data for Row 3
5	0	0	49 H	Data for Row 4
6	0	0	5 FH	Data for Row 5
7	0	0	48 H	Data for Row 6
8	0	0	44 H	Data for Row 7
9	0	0	40 H	Data for Row 8

Notes: 1. These steps do not include any BUSY FLAG CHECK commands.
2. Row 8 may be used by the underline cursor. .

APPLICATION NOTES

Display Oscillator

The SED1210F has an internal oscillator to generate the timing signals required for the LCD display.
If the internal oscillator is used, connect the feedback resistor Rf as shown in figure 3. The feedback resistor leads must be kept as short as possible to reduce stray capacitance and the possibility of crosstalk between the oscillator and adjoining signals.

Figure 3. Using the Internal Oscillator

If an external clock is used, connect it to OSC1 as shown in figure 4.

Figure 4. Using an External Clock

The relationship between the oscillator frequency and the LCD drive frame frequency is
$\mathrm{fFR}=\mathrm{fOSC} / 1600$
For example if fosc $=100 \mathrm{kHz}, \mathrm{fFR}=62.5 \mathrm{~Hz}$

Command Clock (Φ)

When the system MPU issues a command to the SED1210F, the timing for the execution of the command is derived from Φ, the command clock. This would normally be the system MPU clock.
The maximum execution time for a command is given by $16 / \Phi$. For example if $\Phi=1 \mathrm{MHz}$, the maximum execution time for a command is $16 \mu \mathrm{~s}$.

LCD Drive Waveforms

The SED1210F has an internal low source-impedance voltage-driver shown in the figure below. The switches are closed to switch the segment data.

Examples of drive waveforms are shown below.

- LCD Drive Waveform - 1 Line Display (1/8 Duty Cycle)

- LCD Drive Waveform - 2 Line Display (1/16 Duty Cycle)

LCD Display Interface

- 8 Characters/2 line

- 20 Characters/2 lines

- Interface with 8-bit CPU

Z80 is a registered trademark of Zilog Corporation.

APPENDIX A：CHARACTER CODES AND FONTS
SED1210F0A

		Lower 4 bit（Do to D_{3} ）of Character Code（Hecadecimal）															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	CGRAM AREA$5 \times 8 \text { DOTS }$															
	2			II					\square			■量品	－	!	－	H	
	3											$\begin{aligned} & \text { II } \\ & \hline 1 \end{aligned}$	$\begin{gathered} \text { 最 } \\ \text { " } \end{gathered}$		－		
	4																
	5							E	GE						－ － －		－1010
	6	!i"	\|ran		＂				－		!				品品	票＂	（an＂
	7						（	－	！								－
	A		$\begin{array}{\|l\|l\|} \hline \text { nen } \\ \hline \end{array}$		－	．	E			－$\square_{\text {－}}$		\|	\|-n				－E－
	B	－															
	C										淮						
	D											亩』＂				－■．	昷是

SED1210F0B

APPENDIX B: I/O TERMINAL STRUCTURE

I/O Terminal Structure Input

- Input Terminal (No pull-up)

Terminals used: Φ, OSC1

- Input Terminal (No pull-up) Terminals used: DB0 to DB6

- Input Terminal (Pull-up)

Terminals used: $\overline{\mathrm{CS}}, \overline{\mathrm{RD}}, \overline{\mathrm{WR}}, \mathrm{A} 0$

- I/O Terminal (No pull-up)

Terminals used: DB7

- Output Terminal (No pull-up)

Terminals used: OSC2, SO, SHCL, LP, FR

- LCD Drive Terminal (No pull-up)

Terminals used: SEG1 to SEG40, COM1 to COM16

SED1220 LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW 4-1
FEATURES 4-1
BLOCK DIAGRAM 4-2
CHIP SPECIFICATION 4-3
DESCRIPTION OF PINS 4-11
FUNCTIONAL DESCRIPTION 4-14
COMMAND 4-21
CHARACTER GENERATOR 4-24
ABSOLUTE MAXIMUM RATINGS 4-31
DC CHARACTERISTICS 4-32
TIMING CHARACTERISTICS 4-34
MPU INTERFACE (REFERENCE EXAMPLES) 4-37
INTERFACE TO LCD CELLS (REFERENCE) 4-38
LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS) 4-42

OVERVIEW

SED1220 is a dot matrix LCD controller/driver for character display. Using 4bits data, 8bits data or serial data being provided from the micro computer, it displays up to 36 characters, 4 user defined characters and up to 120 symbols.
Up to 256 types of built-in character generator ROMs are prepared. Each character font is consisted of 5×8 dots. It also contains the RAM for displaying 4 user defined characters each font consisting of 5×8 dots. It is symbol register allows character display with high degree of freedom. This handy equipment can be operated with minimum power consumption with its low power consumption design, standby and sleeping mode.

FEATURES

- Built-in data display RAM - 36 characters +4 user defined characters +120 symbols.
- CG ROM (For up to 256 characters), CG RAM (for 4 characters) and symbol register (for 120 symbols).
- No. of display digit and lines
< In normal mode >
(1) $(12$ digits +4 segments for signal $) \times 3$ lines +120 symbols +5 static symbols (SED1220D**)
(2) (12 digits +4 segments for signal) $\times 2$ lines +120 symbols +5 static symbols (SED1221D**)
(3) 12 digits $\times 2$ lines +120 symbols +5 static symbols (SED1222D**)
(4) $(12$ digits +4 segments for signal $) \times 2$ lines +120 symbols +10 static symbols (SED122AD**)
< In standby mode >
(1) 5 static symbols
(2) 5 static symbols
(3) 5 static symbols
(4) 10 static symbols
- Built-in CR oscillation circuit (C and R contained)
- Accepts external clock input
- High-speed MPU interface Affords interface with both 68/80 system MPUs Affords interface through 4 bits and 8 bits
- Affords serial interface
- Character font consists of 5×8 dots
- Duty ratio (1) $1 / 26$ (SED1220D**)
(2) 1/18 (SED1221D $* *$, SED1222D $* *$)
- Simplified command setting
- Built-in power circuit for driving liquid crystal Power amplifier circuit, power regulation circuit and voltage followers $\times 4$
- Built-in electronic volume function
- Low power consumption
$80 \mu \mathrm{~A}$ max. (In normal operation, including operating current of the power supply).
$20 \mu \mathrm{~A}$ max. (In standby mode for displaying static icon).
$5 \mu \mathrm{~A}$ max. (In sleeping mode when display is turned off).
- Power supply

$$
\begin{array}{ll}
\text { VdD - Vss } & -2.4 \mathrm{~V} \sim-3.6 \mathrm{~V} \\
\text { VdD - V5 } & -4.0 \mathrm{~V} \sim-6.0 \mathrm{~V}
\end{array}
$$

- Temperature range for wide range operation $\mathrm{Ta}=-30 \sim 85^{\circ} \mathrm{C}$
- CMOS process
- Shipping style

Chip (Al pad product)	SED1222D $* \mathrm{~A}$
Chip (Au bump product)	SED122 $* \mathrm{D} * \mathrm{~B}$
TCP	SED122 $* \mathrm{~T} * *$

- This unit does not employ radiation protection design

BLOCK DIAGRAM

CHIP SPECIFICATION

SED1220 $_{* *} / 1221 \mathrm{D}_{* *} / 122 \mathrm{AD}_{* *}$

$\operatorname{SED} 122 * \mathrm{D}_{\underset{*}{*}}$
Digits prepared for CGROM pattern changes

Chip size:	$7.70 \times 2.77 \mathrm{~mm}$
Pad pitch:	$100 \mu \mathrm{~m}$ (Minimum)
Chip thickness (for reference):	$625 \pm 25 \mu \mathrm{~m}($ SED $122 * \mathrm{D} * \mathrm{~A})$
	$($ SED $122 * \mathrm{D} * \mathrm{~B})$

1) A1 pad specifications

Pad size on Y side:
Pad size on X side:
2) Au bump specifications

Bump size on Y side:
Bump size on X side:
Bump height (for reference)
<Fuse Pines>

1) Al pad. pad size
2) Au bump

Bump size $\quad 80 \mu \mathrm{~m} \times 69 \mu \mathrm{~m}$

SED1222D**

SED1222D ${ }_{\uparrow}^{* *}$
Digits prepared for CGROM pattern changes
Chip size: $\quad 7.70 \times 2.77 \mathrm{~mm}$
Pad pitch: $\quad 124 \mu \mathrm{~m}$ (Minimum)
Chip thickness (for reference): $625 \pm 50 \mu \mathrm{~m}$ (SED1222D*A)

1) A1 pad specifications

Pad size on Y side:
Pad size on X side:
$90 \mu \mathrm{~m} \times 96 \mu \mathrm{~m}$
$96 \mu \mathrm{~m} \times 90 \mu \mathrm{~m}$ (PAD. No. $1 \sim 11,28 \sim 32,52 \sim 108$)
$175 \mu \mathrm{~m} \times 135 \mu \mathrm{~m}$ (PAD. No. $12 \sim 27$)
<Fuse Pines>

1) Al pad. pad size $86 \mu \mathrm{~m} \times 75 \mu \mathrm{~m}$
<SED1220D ${ }_{* * / 1221 D_{* *>}}$
Unit: $\mu \mathrm{m}$

PAD		COORDINATES	
No.	Name	X	Y
1	NC	-3700	-1204
2	NC	-3600	\uparrow
3	NC	-3500	
4	A0	-3252	
5	WR	-3132	
6	CS	-3012	
7	D7	-2892	
8	D6	-2772	
9	D5	-2652	
10	D4	-2532	
11	D3	-2412	
12	D2	-2292	
13	D1	-2172	
14	D0	-2052	
15	VDD	-1836	
16	VDD	-1736	
17	Vss	-1556	
18	Vss	-1456	
19	V5	-1276	
20	V5	-1176	
21	V4	-996	
22	V4	-896	
23	V3	-716	
24	V3	-616	
25	V2	-436	
26	V2	-336	
27	V1	-156	
28	V1	-56	
29	Vo	124	
30	Vo	224	
31	VR	404	
32	VR	504	
33	Vout	684	
34	Vout	784	
35	CAP2-	964	
36	CAP2-	1064	
37	CAP2+	1244	
38	CAP2+	1344	
39	CAP1-	1524	
40	CAP1-	1624	
41	CAP1+	1804	
42	CAP1+	1904	
43	Vss	2084	
44	Vss	2184	
45	VDD	2364	
46	VDD	2464	
47	CK	2693	
48	VS1	2821	
49	P/S	2949	
50	I/F	3077	
51	RES	3205	
52	NC	3500	
53	NC	3600	\checkmark
54	NC	3700	-1204

PAD		COORDINATES	
No.	Name	X	Y
55	VdD	3670	-910
56	(FSA)	3603	-796
57	(FSB)	\uparrow	-696
58	(FSC)		-596
59	(FSO)		-496
60	(FS1)		-396
61	(FS2)	\checkmark	-296
62	(FS3)	3603	-196
63	VDD	3670	-82
64	COMSA	\uparrow	61
65	COMS1		203
66	COM1		303
67	COM2		403
68	COM3		503
69	COM4		603
70	COM5		703
71	COM6		803
72	COM7	\checkmark	903
73	COM8	3670	1003
74	NC	3700	1204
75	NC	3600	\uparrow
76	NC	3500	
77	SEGS1	3319	
78	SEGS2	3219	
79	SEG1	3119	
80	SEG2	3019	
81	SEG3	2919	
82	SEG4	2819	
83	SEG5	2719	
84	SEG6	2619	
85	SEG7	2519	
86	SEG8	2419	
87	SEG9	2319	
88	SEG10	2219	
89	SEG11	2119	
90	SEG12	2019	
91	SEG13	1919	
92	SEG14	1819	
93	SEG15	1719	
94	SEG16	1619	
95	SEG17	1519	
96	SEG18	1419	
97	SEG19	1319	
98	SEG20	1219	
99	SEG21	1119	
100	SEG22	1019	
101	SEG23	919	
102	SEG24	819	
103	SEG25	719	
104	SEG26	619	
105	SEG27	519	
106	SEG28	419	
107	SEG29	319	$\stackrel{\rightharpoonup}{*}$
108	SEG30	219	1204

(FS*) : Being fuse adjusting pins, maintain them on floating state.
CK pins : Should be VDD when not being used.

PAD		COORDINATES	
No.	Name	X	Y
109	SEG31	119	1204
110	SEG32	19	\uparrow
111	SEG33	-81	
112	SEG34	-181	
113	SEG35	-281	
114	SEG36	-381	
115	SEG37	-481	
116	SEG38	-581	
117	SEG39	-681	
118	SEG40	-781	
119	SEG41	-881	
120	SEG42	-981	
121	SEG43	-1081	
122	SEG44	-1181	
123	SEG45	-1281	
124	SEG46	-1381	
125	SEG47	-1481	
126	SEG48	-1581	
127	SEG49	-1681	
128	SEG50	-1781	
129	SEG51	-1881	
130	SEG52	-1981	
131	SEG53	-2081	
132	SEG54	-2181	
133	SEG55	-2281	
134	SEG56	-2381	
135	SEG57	-2481	
136	SEG58	-2581	
137	SEG59	-2681	
138	SEG60	-2781	
139	SEGS4	-2881	
140	SEGS5	-2981	
141	COM24	-3081	
142	COM23	-3181	
143	COM22	-3281	
144	NC	-3500	
145	NC	-3600	\checkmark
146	NC	-3700	1204
147	COM21	-3670	1000
148	COM20	+	900
149	COM19		800
150	COM18		700
151	COM17		600
152	COM16		500
153	COM15		400
154	COM14		300
155	COM13		200
156	COM12		100
157	COM11		0
158	COM10		-100
159	COM9		-200
160	COMS2		-300
161	SEGSA		-433
162	SEGSB		-533
163	SEGSC		-633
164	SEGSD	\downarrow	-733
165	SEGSE	-3670	-833

Unit: $\mu \mathrm{m}$

PAD		COORDINATES		PAD		COORDINATES	
No.	Name	X	Y	No.	Name	X	Y
1	A0	-3312	-1228	55	SEG4	3100	1228
2	WR	-3180	4	56	SEG5	2976	\uparrow
3	CS	-3048		57	SEG6	2852	
4	D7	-2916		58	SEG7	2728	
5	D6	-2784		59	SEG8	2604	
6	D5	-2652		60	SEG9	2480	
7	D4	-2520		61	SEG10	2356	
8	D3	-2388		62	SEG11	2232	
9	D2	-2256		63	SEG12	2108	
10	D1	-2124	\downarrow	64	SEG13	1984	
11	D0	-1992	-1228	65	SEG14	1860	
12	Vdd	-1786	-1204	66	SEG15	1736	
13	Vss	-1506	\uparrow	67	SEG16	1612	
14	V5	-1226		68	SEG17	1488	
15	V_{4}	-946		69	SEG18	1364	
16	V3	-666		70	SEG19	1240	
17	V 2	-386		71	SEG20	1116	
18	V_{1}	-106		72	SEG21	992	
19	Vo	174		73	SEG22	868	
20	VR	454		74	SEG23	744	
21	Vout	734		75	SEG24	620	
22	CAP2-	1014		76	SEG25	496	
23	CAP2+	1294		77	SEG26	372	
24	CAP1-	1574		78	SEG27	248	
25	CAP1+	1854		79	SEG28	124	
26	Vss	2134	\checkmark	80	SEG29	0	
27	VDD	2414	-1204	81	SEG30	-124	
28	CK	2692	-1228	82	SEG31	-248	
29	VS1	2836	\uparrow	83	SEG32	-372	
30	P/S	2980		84	SEG33	-496	
31	1/F	3124	V	85	SEG34	-620	
32	RES	3268	-1228	86	SEG35	-744	
33	VDD	3694	-919	87	SEG36	-868	
34	(FSA)	3603	-796	88	SEG37	-992	
35	(FSB)	-	-696	89	SEG38	-1116	
36	(FSC)		-596	90	SEG39	-1240	
37	(FSO)		-496	91	SEG40	-1364	
38	(FS1)		-396	92	SEG41	-1488	
39	(FS2)		-296	93	SEG42	-1612	
40	(FS3)	3603	-196	94	SEG43	-1736	
41	VDD	3694	-73	95	SEG44	-1860	
42	COMSA	\uparrow	63	96	SEG45	-1984	
43	COMS1		199	97	SEG46	-2108	
44	COM1		323	98	SEG47	-2232	
46	COM 3		571	100	SEG49	-2480	
47	COM4		695	101	SEG50	-2604	
48	COM5		819	102	SEG51	-2728	
49	COM6		943	103	SEG52	-2852	
50	COM7	\checkmark	1067	104	SEG53	-2976	
51	COM8	3694	1191	105	SEG54	-3100	
52	SEG1	3472	1228	106	SEG55	-3224	
53	SEG2	3348	1228	107	SEG56	-3348	\checkmark
54	SEG3	3224	1228	108	SEG57	-3472	1228

(FS*) : Being fuse adjusting pins, maintain them on floating state.
CK pins : Should be VDD when not being used.

PAD		COORDINATES	
No.	Name	\mathbf{X}	\mathbf{Y}
109	SEG58	-3694	1191
110	SEG59	4	1067
111	SEG60		943
112	COM16		819
113	COM15		695
114	COM14		571
115	COM13		447
116	COM12		323
117	COM11		119
118	COM10		75
119	COM9		-49
120	COMS2		-173
121	SEGSA		-335
122	SEGSB		-459
123	SEGSC		-583
124	SEGSD		-707
125	SEGSE	-3694	-831

<SED122AD**>
Unit: $\mu \mathrm{m}$

PAD		COORDINATES	
No.	Name	X	Y
1	NC	-3700	-1204
2	NC	-3600	
3	NC	-3500	
4	A0	-3252	
5	WR	-3132	
6	CS	-3012	
7	D7	-2892	
8	D6	-2772	
9	D5	-2652	
10	D4	-2532	
11	D3	-2412	
12	D2	-2292	
13	D1	-2172	
14	D0	-2052	
15	VDD	-1836	
16	VDD	-1736	
17	Vss	-1556	
18	Vss	-1456	
19	V5	-1276	
20	V5	-1176	
21	V4	-996	
22	V4	-896	
23	V3	-716	
24	V3	-616	
25	V2	-436	
26	V2	-336	
27	V1	-156	
28	V1	-56	
29	Vo	124	
30	Vo	224	
31	VR	404	
32	VR	504	
33	Vout	684	
34	Vout	784	
35	CAP2-	964	
36	CAP2-	1064	
37	CAP2+	1244	
38	CAP2+	1344	
39	CAP1-	1524	
40	CAP1-	1624	
41	CAP1+	1804	
42	CAP1+	1904	
43	Vss	2084	
44	Vss	2184	
45	VDD	2364	
46	VDD	2464	
47	CK	2693	
48	VS1	2821	
49	P/S	2949	
50	I/F	3077	
51	RES	3205	
52	NC	3500	
53	NC	3600	\downarrow
54	NC	3700	-1204

PAD		COORDINATES	
No.	Name	X	Y
55	VDD	3670	-910
56	(FSA)	3603	-796
57	(FSB)	\uparrow	-696
58	(FSC)		-596
59	(FSO)		-496
60	(FS1)		-396
61	(FS2)	\downarrow	-296
62	(FS3)	3603	-196
63	VDD	3670	-82
64	COMSA	\uparrow	61
65	COMS1		203
66	COM1		303
67	COM2		403
68	COM3		503
69	COM4		603
70	COM5		703
71	COM6		803
72	COM7	\downarrow	903
73	COM8	3670	1003
74	NC	3700	1204
75	NC	3600	\uparrow
76	NC	3500	
77	SEGS1	3319	
78	SEGS2	3219	
79	SEG1	3119	
80	SEG2	3019	
81	SEG3	2919	
82	SEG4	2819	
83	SEG5	2719	
84	SEG6	2619	
85	SEG7	2519	
86	SEG8	2419	
87	SEG9	2319	
88	SEG10	2219	
89	SEG11	2119	
90	SEG12	2019	
91	SEG13	1919	
92	SEG14	1819	
93	SEG15	1719	
94	SEG16	1619	
95	SEG17	1519	
96	SEG18	1419	
97	SEG19	1319	
98	SEG20	1219	
99	SEG21	1119	
100	SEG22	1019	
101	SEG23	919	
102	SEG24	819	
103	SEG25	719	
104	SEG26	619	
105	SEG27	519	
106	SEG28	419	
107	SEG29	319	\checkmark
108	SEG30	219	1204

(FS*) : This is a fuse adjusting terminal. Set it to floating state.
CK pins : Set it to VDD when not used.

PAD		COORDINATES	
No.	Name	X	Y
109	SEG31	119	1204
110	SEG32	19	\uparrow
111	SEG33	-81	
112	SEG34	-181	
113	SEG35	-281	
114	SEG36	-381	
115	SEG37	-481	
116	SEG38	-581	
117	SEG39	-681	
118	SEG40	-781	
119	SEG41	-881	
120	SEG42	-981	
121	SEG43	-1081	
122	SEG44	-1181	
123	SEG45	-1281	
124	SEG46	-1381	
125	SEG47	-1481	
126	SEG48	-1581	
127	SEG49	-1681	
128	SEG50	-1781	
129	SEG51	-1881	
130	SEG52	-1981	
131	SEG53	-2081	
132	SEG54	-2181	
133	SEG55	-2281	
134	SEG56	-2381	
135	SEG57	-2481	
136	SEG58	-2581	
137	SEG59	-2681	
138	SEG60	-2781	
139	SEGS4	-2881	
140	SEGS5	-2981	
141	NC	-3081	
142	NC	-3181	
143	NC	-3281	
144	NC	-3500	
145	NC	-3600	\checkmark
146	NC	-3700	1204
147	COM16	-3670	1000
148	COM15	\uparrow	900
149	COM14		800
150	COM13		700
151	COM12		600
152	COM11		500
153	COM10		400
154	COM9		300
155	COMS2		200
156	SEGSA		67
157	SEGSB		-33
158	SEGSC		-133
159	SEGSD		-233
160	SEGSE		-333
161	SEGSF		-433
162	SEGSG		-533
163	SEGSH		-633
164	SEGSI	\checkmark	-733
165	SEGSJ	-3670	-833

DESCRIPTION OF PINS

Power Pins

Pin name	1/0	Description	Q'ty
VDD	Power supply	Connected to logic supply. Common with MPU power terminal Vcc.	1
Vss	Power supply	OV power terminal connected to system ground.	1
$\begin{aligned} & \hline \mathrm{V}_{0}, \mathrm{~V}_{1} \\ & \mathrm{~V}_{2}, \mathrm{~V}_{3} \\ & \mathrm{~V}_{4}, \mathrm{~V}_{5} \end{aligned}$	Power supply	Multi-level power supply for liquid crystal drive. The voltage determined in the liquid crystal cell is resistancedivided or impedance-converted by operational amplifier, and the resultant voltage is applied. The potential is determined on the basis of VDD and the following equation must be respected. $\begin{aligned} & \text { VDD }=V_{0} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5} \\ & \text { VDD } \geq V_{S S} \geq V_{5} \geq \text { VouT } \end{aligned}$ When the built-in power supply is ON , the following voltages are given to pins V1 to V4 by built-in power circuit: $\begin{array}{ll} V_{1}=1 / 5 V_{5} & \left(1 / 4 V_{5}\right) \\ V_{2}=2 / 5 V_{5} & \left(2 / 4 V_{5}\right) \\ V_{3}=3 / 5 V_{5} & \left(3 / 4 V_{5}\right) \end{array}$ $V_{4}=4 / 5 \mathrm{~V}_{5} \quad\left(4 / 4 \mathrm{~V}_{5}\right) \text { voltage ratings in }() \text { are for optinal choices. }$	6
Vs1	0	Power supply voltage output pin for oscillating circuit, and DC/DC source. Don't connect this pin to an external load.	1

LCD Power Circuit Pins

Pin name	I/O	Description	Q'ty
CAP1+	O	Capacitor positive side connecting pin for boosting. This pin connects the capacitor with pin CAP1-.	1
CAP1-	O	Capacitor negative side connecting pin for boosting. This pin connects a capacitor with pin CAP+.	1
CAP2+	O	Capacitor positive side connecting pin for boosting. This pin connects a capacitor with pin CAP2-.	1
CAP2-	O	Capacitor negative side connecting pin for boosting. This pin connects a capacitor with pin CAP2+.	1
VouT	O	Output pin for boosting. This pin connects a smoothing capacitor with VDD pin.	1
VR	I	Voltage regulating pin. This pin gives a voltage between VDD and V5 by resistance-division of voltage.	1

Pins for System Bus Connection

Pin name	I/O	Description										Q'ty
$\begin{gathered} \text { D7 (SI) } \\ \text { D6 (SCL) } \\ \text { D5 ~ D0 } \end{gathered}$	I	8 -bit input data bus. These pins are connected to a 8 -bit or 16 -bit standard MPU data bus. When P/S = "Low", the D7 and D6 pins are operated as a serial data input and a serial clock input respectively.										8
		P/S RES	I/F	D7	D6	D5	D4	D3-D0	$\overline{\text { CS }}$	A0	WR	
		"L" -	-	SI	SCL	-	-	OPEN	$\overline{\mathrm{CS}}$	A0		
		"H" "H"	"H"	D7	D6	D5	D4	D3-D0	$\overline{\text { CS }}$	A0	E	
		"H" "L"	"H"	D7	D6	D5	D4	D3-D0	$\overline{\mathrm{CS}}$	A0	WR	
		"H" "L"	"L"	D7	D6	D5	D4	OPEN	$\overline{\text { CS }}$	A0	$\overline{\mathrm{WR}}$	
		RES: Indicates the active potential. OPEN:Though "OPEN" is available, fixing the potential is recommended for noise-withstnading characteristical reason. -: Indicates that it can be set at either " H " or " L ", but fixing the potential is required.										
A0	1	Usually, this pin connects the least significant bit of the MPU address bus and identifies a data command. 0 : Indicates that D0 to D7 are a command. 1 : Indicates that D0 to D7 are display data.										1
RES	1	In case of a 68 series MPU, initialization can be performed by changing RES \sqcap. In case of an 80 series MPU, initialization can be performed by changing \llcorner. A reset operation is performed by edge sensing of the RES signal. An interface type for the $68 / 80$ series MPU is selected by input level after initialization. "L" : 68 series MPU interface "H" : 80 series MPU interface										1
$\overline{\mathrm{CS}}$	1	Chip select signal. Usually, this pin inputs the signal obtained by decoding an address bus signal. At the "Low" level, this pin is enabled.										1
$\bar{W} \mathrm{R}$ (E)	1	<When connecting an 80 series MPU> Active "Low". This pin connects the $\overline{W R}$ signal of the 80 series MPU. The signal on the data bus is fetched at the rise of the WR signal. <When connecting a 68 series MPU> Active "High". This pin becomes an enable clock input of the 68 series MPU.										1
P/S	1	This pin switches between serial data input and parallel data input.										1
		P/S	Chip	Select		a/Com	mand	Data		ial Clo		
		"High"		CS		A0		D0~D7		-		
		"Low"		CS		A0		SI		SCL		
IF	1	Interface data length select pin for parallel data input. "High": 8-bit parallel input "Low": 4-bit parallel input When P/S = "Low", connect this pin to VDD or Vss.										1
CK	I	External input terminal										1

Liquid Crystal Drive Circuit Signals

Dynamic drive terminal (SED1220D**1221D**/122AD**)

Pin name	I/O	Description	Q'ty
COM1~ COM24	O	Common signal output pin (for characters)	24
COMS1, CMOS2	O	Common signal output pin (except for characters) CMOS1, CMOS2: Common output for symbol display	2
SEG1~ SEG60	O	Segment signal output pin (for characters)	60
SEGS1,2 4,5	O	Segment signal output pin (except for characters) SEGS1, SEGS2: Segment output for signal output	4

Dynamic drive terminal (SED1222D**)

Pin name	I/O	Description	Q'ty
COM1~ COM16	O	Common signal output pin (for characters)	16
COMS1, CMOS2	O	Common signal output pin (except for characters) CMOS1, CMOS2: Common output for symbol display	2
SEG1~ SEG60	O	Segment signal output pin (for characters)	60

Static drive terminal

Pin name	I/O	Description	Q'ty
COMSA	O	Common signal output pin (for icon)	1
SEGSA, B		Segment signal output pin (for icon)	5 to
C, D, E	O	SEGSF, G, H, I, J (only SED122A)	10
F, G, H, I, J			

Note: For the electrode of liquid crystal display panel to be connected to the static drive terminal, we recommend you to use a pattern in which it is separated from the electrode connected to the dynamic drive terminal. When this pattern is too close to the other electrode, both the liquid crystal display and electrode will be deteriorated.

FUNCTIONAL DESCRIPTION

MPU Interface

Selection of interface type

In the SED1220 Series, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting "High" or "Low" as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table 1.

Table 1

P/S	Type	$\overline{\mathrm{CS}}$	A 0	$\overline{\mathrm{WR}}$	SI	SCL	$\mathrm{D} 0 \sim \mathrm{D7}$
"High"	Parallel Input	$\overline{\mathrm{CS}}$	A 0	$\overline{\mathrm{WR}}$	-	-	$\mathrm{D} 0 \sim \mathrm{D7}$
"Low"	Serial Input	$\overline{\mathrm{CS}}$	A 0	H, L	SI	SCL	-

Parallel Input
In the SED1220 Series, when parallel input is selected (P/S = "High"), it can be directly connected to the 80 series MPU bus or 68 series MPU bus, as shown in Table 2, if either "High" or "Low" is selected as RES pin polarity after a reset input, because the RES pin has an MPU select function.
Selection between 8 bits and 4 bits is performed by command.
Table 2

RES input polarity	Type	A0	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$	D0~D7
\downarrow active	68 series	A0	E	$\overline{\mathrm{CS}}$	$\mathrm{D} 0 \sim \mathrm{D7}$
\uparrow active	80 series	A 0	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$	$\mathrm{D} 0 \sim \mathrm{D7}$

Interface with 4-bit MPU interface

When data transfer is performed by 4-bit interface ($\mathrm{IF}=0$), an 8 -bit command, data and address are divided into two parts.

$\overline{W R}$

D7 to D4

Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then perform writing.

Serial interface ($\mathrm{P} / \mathrm{S}=$ "Low")

The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled in the ship selected status ($\mathrm{CS}=$ "Low").
When no chip is selected, the shift register and counter are reset to the initial status.
Serial data is input in the order of D7, D6 D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL).
At the rising edge of the 8th serial clock, the serial data is converted into 8-bit parallel data and this data is processed. The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when A0 = "High", it is regarded as display data. When $\mathrm{A} 0=$ "Low", it is regarded as a command.
The A0 input is read in and identified at the rise of the 8 x n-th clock of Serial Clock (SCL) after chip selection.
Fig. 1 shows a timing chart of the serial interface.
Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length.
We recommend the user to perform an operation check with a real machine.
We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.

Fig. 1

Identification of data bus signals

The SED1220 series identifies data bus signals, as shown in Table 3, by combinations of A0 and $\overline{\mathrm{WR}}(\mathrm{E})$.
Table 3

Common	68 series	80 series	Function		
A0	E	$\overline{\text { WR }}$		Writing to RAM and symbol register	
1	1	0	Writing to internal register (command)		
0	1	0	Wynn		

Chip select

The SED1220 series has a chip select pin ($\overline{\mathrm{CS}})$. Only when $\overline{\mathrm{CS}}=$ "Low", MPU interfacing is enabled. In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is input regardless of the $\overline{\mathrm{CS}}$ status.

Power Circuit

This is a low-power-consumption power circuit that generates a voltage required for liquid crystal drive.
The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.
The power circuit incorporated in the SED1220 Series is set for a small-scale liquid crystal panel, so that its display quality may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity.
In this case, an external power supply must be used.
A power circuit function can be selected by power control command. With this, an external power supply and a part of the internal power supply can be used together.

	Amplifying circuit	Voltage regulat- ing circuit	Voltage follower	External voltage input	Amplifying system pin
Note 1	-		-	Per specification	
Note 2	\times			VouT	OPEN
Note 3	\times	\times	\times	$\mathrm{V}_{5}=\mathrm{V}$ OUT	OPEN
	\times	\times	$\mathrm{V}_{2}, \mathrm{~V} 3, \mathrm{~V} 4, \mathrm{~V}_{5}$	OPEN	

Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open and give a liquid crystal drive voltage to the Vout pin from the outside.
Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins open, connect between the V5 pin and Vout pin, and give a liquid crystal drive voltage from the outside.
Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages V1, V2, V3, V4 and V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and Vout pins open.

Voltage Tripler Circuit

If capacitors are connected between CAP $+1-\mathrm{CAP}-1$ and CAP2+,CAP2- and Vss Vout, VDD- Vss potential is negatively tripled and generated at Vout terminal. When the voltage is boosted double, open CAP2+ and
connect CAP2- to Vout terminal.
At this time, the oscillating circuit must be operating since the amplifying circuit utilize the signal from the oscillation output.

Potential relationship of amplified voltage

Voltage regulating circuit

Amplified voltage generated at Vout outputs liquid crystal drive voltage V5 through the voltage regulation circuit.V5 voltage can be obtained from the expression (1) below by adjusting the resistors Ra and Rb within the range of V5<Vout.calculated by the following formula:

$$
\begin{equation*}
\mathrm{V}_{5}=\left(1+\frac{\mathrm{Rb}}{\mathrm{Ra}}\right) \cdot \mathrm{V}_{\mathrm{REG}} \tag{1}
\end{equation*}
$$

Where, Vreg is the constant power supply within IC.
VREG is maintained constantly at VREG $\fallingdotseq 2.0 \mathrm{~V}$.
Voltage regulation of V5 output is done by connecting to a variable register between VR, VDD and V5. It is recommended to combine fixed registers R1 and R3 with variable resistor R2 for fine adjustment of V5 voltage.
[Sample setting on R1, R2 and R3]

- $\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3=1.2 \mathrm{M}$ ohm (decided from the current value I 05 passed between VDD - V5. Where, I $05 \leq 5 \mu \mathrm{~A}$ is supposed).
- Variable voltage range provided by R 2 is from -4 V to -6 V (to be decided considering charecteristics of the liquid crystal).
- Since Vreg $=2.0 \mathrm{~V}$, if the electronic volume register is set at $(0,0,0,0,0)$, followings are derived from above conditions and expression (1) :

$$
\begin{aligned}
& \mathrm{R} 1=400 \mathrm{~K} \Omega \\
& \mathrm{R} 2=200 \mathrm{~K} \Omega \\
& \mathrm{R} 3=600 \mathrm{~K} \Omega
\end{aligned}
$$

The voltage regulation circuit outputs Vreg with the temperature gradient of approximately $-0.04 \% /{ }^{\circ} \mathrm{C}$.
Since VR terminal has high input impedance, anti-noise measures must be considered including use of shortened wiring distance and shield wire.

- Voltage Regulation Circuit Using Electronic Volume Function

The electronic volume function allows to control the liquid crystal drive voltage V5 with the commands and thus to adjust density of the liquid crystal display.
Liquid crystal drive voltage V5 can have one of 32 voltage values if 5-bit data is set to the electronic volume register.

When using the electronic volume function, you need to turn the voltage regulation circuit on using the supply control command.
[Sample constants setting when electronic volume function is used]
$\mathrm{V}_{5}=\left(1+\frac{\mathrm{Rb}}{\mathrm{Ra}}\right) \cdot \mathrm{VEV}^{-}$
Where Vev $=$ Vreg $-\alpha$

$$
\alpha=\text { VREG } / 150
$$

No.	Electronic volume register	a	V_{5}
0	$(0,0,0,0,0)$	0	Large
1	$(0,0,0,0,1)$	1α	\bullet
2	$(0,0,0,1,0)$	2α	\bullet
3	$(0,0,0,1,1)$	3α	\bullet
\bullet	\bullet	\bullet	\bullet
\bullet	$(1,1, \dot{\bullet}, 1,0)$	$(\mathrm{n}-1) \alpha$	\bullet
30	$(1,1,1,1,1)$	$\mathrm{n} \alpha$	Small

When the electronic volume function is not used, select $(0,0,0,0,0)$ for the electronic volume register.

Liquid crystal voltage generating circuit

V5 potential is resistive divided within IC to produce V_{1}, $\mathrm{V} 2, \mathrm{~V} 3$ and V 4 potentials required for driving the liquid crystal. V1, V2, V3 and V4 potentials are then subject to impedance conversion and provided to the liquid crystal drive circuit.

When a built-in supply is used
When voltage is doubled

The liquid crystal drive voltage is fixed to $1 / 5(1 / 4)$ bias. The liquid crystal power terminals $\mathrm{V} 1-\mathrm{V} 5$ must be externally connected with the voltage regulating capacitor C2.

When voltage is tripled

Reference setting values: $\quad \mathrm{C} 1: 0.1-4.7 \mu \mathrm{~F}$
C2: $0.1 \mu \mathrm{~F}$

We recommend the user to set the optimum values to capacitors C1 and C2 according to the panel size watching the liquid crystal display and drive waveforms.

Example 2: When using the built-in power source $(\mathrm{VC}, \mathrm{VF}, \mathrm{P})=(1,1,0)$

Example 3: When using the built-in power source $(\mathrm{VC}, \mathrm{VF}, \mathrm{P})=(0,1,0)$

Reference setting values: $\mathrm{C} 1: 0.47-4.7 \mu \mathrm{~F}$ We suggest you to determine the most appropriate capacitance values, C2: $0.1-4.7 \mu \mathrm{~F} \quad$ fitting to the panel size, for respective capacitors C 1 and C 2 in consideration of the liquid crystal display and drive waveforms.

When a built-in supply is used

Low Power Consumption Mode

SED1220 is provided with standby mode and sleep mode for saving power consumption during standby period.

- Standby Mode

Switching between on and off of the standby mode is done using the power save command.
In the standby mode, only static icon is displayed.

1. Liquid crystal display output

COM1 ~ COM24, COMS1, COMS2 : VDD level
SEG1 ~ SEG60, SEGS1, 2, 4, 5 : VDD level
SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Can be turned on by static drives.
Use the static icon RAM for controlling the static icon display done with SEGSA, B, C, D, E, COMSA.
2. DD RAM, CG RAM and symbol register

Written information is saved as it is irrespective of on or off of the stand-by mode.
3. Operation mode is retained the same as it was prior to execution of the standby mode.
The internal circuit for the dynamic display output is stopped.
4. Oscillating circuit

The oscillation circuit for the static display must be remained on.

- Sleep Mode

To enter the sleep mode, turning off the power circuit and oscillation circuit using the commands, and then execute power save command. This mode helps to save power consumption by reducing current to almost resting current level.

1. Liquid crystal display output

COM1 ~ COM24, COMS1, COMS2 : VDD level
SEG1 ~ SEG60, SEGS1, 2, 4, 5 : VDD level
SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Clear all the data of the static icon registers to " 0 ".
2. DD RAM, CG RAM and symbol register

Written information is saved at it is irrespective of on or off the sleep mode.
3. Operation mode mode is retained the same at it was prior to execution of the sleep mode.
All internal circuits are stopped.
4. Power circuit and oscillation circuit

Turn off the built-in supply circuit and oscillation circuit using the power save command and supply control command.

Reset Circuit

Upon activation of the RES input, this LSI will be initialized.

- Initial State

1. Display on/off control

$C=0$: Cursor off
$B=0$	$:$ Blink off
$D=0$: Display off

2. Power save

$\mathrm{O}=0$: Oscillation off
$\mathrm{PS}=0$: Power save off

3. Supply control
$\mathrm{VC}=0 \quad$: Voltage regulation circuit off
$\mathrm{VF}=0 \quad$: Voltage follower off
$\mathrm{P}=0 \quad$: Amplifying circuit off
4. System setting

$$
\begin{aligned}
& \mathrm{N} 2, \mathrm{~N} 1=0: 2 \text { lines } \\
& \mathrm{S}=0 \quad: \text { Left-hand shift } \\
& \mathrm{CG}=0 \quad: \text { "CGRAM" blank }
\end{aligned}
$$

5. Electronic volume control

$$
\text { Address } \quad: 28 \mathrm{H}
$$

Data $\quad:(0,0,0,0,0)$
6. Static icon

Address	$: 20 \mathrm{H}$
Data	$:(0,0,0,0,0)$
Address	$: 21 \mathrm{H}$
Data	$:(0,0,0,0,0)$
Address	$: 22 \mathrm{H}$
Data	$:(0,0,0,0,0)$
Address	$: 23 \mathrm{H}$
Data	$:(0,0,0,0,0)$

As explained in the Section "MPU interface", the RES terminal connects to the reset terminal of the MPU and initialization is being effected together with the MPU.
However, when the bus, port, etc. of the MPU maintains high-impedance for a certain duration of time after resetting, make the resetting input to the SED1220 after the inputs to the SED1220 have become definite.
As the resetting signal, like explained in the Section "DC characteristics", active level pulses of minimum 10us or more should be used. Normal operation status can be obtained after lus from the edge of the RES signal.
By making the RES terminal active, respective registers can be cleared and the aforesaid setting state can be obtained.
If initialization is not effected by the RES terminal when the supply voltage is applied, it may go into a state where cancellation is unworkable.
In case the built-in liquid crystal power circuit will not be used, it becomes necessary that the RES input be active when the external liquid crystal power is being applied.

COMMAND

Table 4 lists the commands. SED1220 identifies the data bus signal using different combinations of A0 and $\overline{\mathrm{WR}}$ (E). High speed command interpretation and execution are possible since only the internal timing is used.

- Command Overview

Command type	Command name	A0	$\overline{\text { WR }}$
Display control instruction	Cusor Home	0	0
	Display ON/OFF Control	0	0
Power control	Power Save	0	0
	Power Control	0	0
System set	System set	0	0
Address control instruction	Address Set	0	0
Data input instruction	Data Write	1	0

Instruction execution duration of dependents on the internal process time of SED1220, therefore it is necessary to provide a duration larger than the system cycle time (tCYC) between execution of two successive instruction.

- Description of Commands
(1) Cursor Home

This command presets the address counter to 30 H and moves the cursor, when it is present, to the first digit of the first line.

A 0	WR	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	0	0	1	$*$	$*$	$*$	$*$

* : Don't Care
(2) Display ON/OFF Control This command performs on or off of display and cursor setting.
Note: Symbols driven by COMSA and SEGSA - E must be controlled through the static icon RAM.

A 0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	0	1	1	C	B	$*$	D

D	$=0$	$:$ Display off
1		Display on
B	$=0$	$:$ Cursor blink off
	1	$:$ Cursor blink on

Blink displays characters in black and white, alternately. The alternating display will be repeated with approx. 1 second interval.

$$
\begin{aligned}
\mathrm{C} & =0 \\
1 & : \text { Display of cursor } \\
& \text { Does not display }
\end{aligned}
$$

Following table shows relationship between B and C registers and the cursor.

C	B	Cursor display
0	0	Non-display
0	1	Non-display
1	0	Underbar cursor
1	1	Alternate display of display characters in black and white. The cursor position indicates the position of address

The cursor position indicates the position of address counter.

Therefore, whenever moving the cursor, change the address counter value using the RAM address set command or the auto increment done by writing the RAM data.

ISelective flashing symbol display is possible by selecting $(\mathrm{C}, \mathrm{B})=(1,0)$ and thus locating the address counter to the position of the symbol register through selecting (since the symbol is corresponding to the character at each 5 dots).
(3) Power Save

This command is used to controlling the oscillation circuit and setting or resetting the sleep mode.

A0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	1	0	0	$*$	$*$	O	PS

* : Don't Care

PS $\quad=0 \quad:$ Power save off (reset)
1 : Power save on (set)
O $\quad=0 \quad$: Oscillating circuit off (stop of oscillation)
1 : Oscillating circuit on (oscilla tion)
(4) Supply Control

This command is used for controlling operation of the built-in power circuit.

A0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	1	0	1	0	VC	VF	P
P	: Amplifying circuit off								
	$=0$	Amplifying circuit on							

Note: The oscillation circuit must be turned on for the amplitying circuit to be active.

VF $\quad=0 \quad$: Voltage follower off
1 : Voltage follower on
$\begin{aligned} \text { VC } \quad 0 & : \text { Voltage regulation circuit off } \\ 1 & : \text { Voltage regulation circuit on }\end{aligned}$
(5) System Set

This command is used for selecting display line, common shift direction and use/non-use of CR RAM.
When power on or resetting is done, execute this command first.

A 0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	1	1	0	N 1	N 2	S	CG

* : Don't Care
$\mathrm{N} 2, \mathrm{~N} 1=0,0: 2$ lines
$\mathrm{N} 2, \mathrm{~N} 1=0,1:$ 3lines
$\mathrm{S} \quad=0 \quad:$ COM left shift
$=1:$ COM right shift
CG $\quad=0 \quad$: Use CG RAM
1 : Does not use RAM
(6) RAM Address Set

This command sets addresses to write data into the DD RAM, CG RAM and symbol register in the address counter.

When the cursor is displayed, the cursor is displayed at the display position corresponding to the DD RAM address set by this command.

A 0	WR	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	1		ADDRESS					

(1) The settable address length is ADDRESS $=00 \mathrm{H}$ to 7 FH .
(2) Before writing data into the RAM, set the data write address by this command. Next, when data is written in succession, the address is automatically incremented.

RAM Map

[^0](7) Data Write

(1) This command writes data the DD RAM, CG RAM or symbol register.
(2) This command automatically increases the address counter by +1 , thus enabling continuous writing of data.
<Example of Data Writing>
Following figures illustrates an example of continuous writing of one line data to DD RAM.

Table 4 SED1220 Series Command List

Command	Code										Function
	A0		D7	D6	D5	D4	D3	D2	D1	D0	
(1) Cursor Home	0	0	0	0	0	1	*	*	*	*	Moves the cursor to the home position.
(2) Display ON/OFF Control	0	0	0	0	1	1	C	B	*	D	Sets cursor ON/OFF (C), cursor blink ON//OFF (B), and display ON/OFF (D). $\mathrm{C}=1$ (cursor ON) 0 (cursor OFF), $\mathrm{B}=1$ (blink ON) 0 (blink OFF), D = 1 (display ON) $\mathrm{D}=0$ (display OFF)
(3) Power Save	0	0	0	1	0	0	*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (0). PS = 1 (power save ON) 0 (power save OFF), $0=1$ (oscillating circuit ON) 0 (oscillating circuit OFF)
(4) Power Control	0	0	0	1	0	1	0	VC	VF	P	Sets voltage regulating circuit ON/OFF and boosting circuit ON/OFF (P). $\mathrm{VC}=1$ (voltage regulating circuit ON) 0 (voltage regulating circuit OFF) $\mathrm{VF}=1$ (voltage follower ON) 0 (voltage follower OFF), $\mathrm{P}=1$ (boosting circuit ON) 0 (boosting circuit OFF)
(5) System Set	0	0	0	1	1	0	N2	N1	S	CG	Sets the use or non-use of CG RAM and shifting direction of display line (N1, N2) and COM $\mathrm{CG}=1$ (use of CG RAM), $0=$ (Does not use CG RAM), $\mathrm{M} 2, \mathrm{~N} 1=0,0$ (2 lines) 0,1 (3 lines). $\mathrm{S}=0$ (left shift), 1 (right shift).
(6) RAM Address Set	0	0	1	ADDRESS							Sets the DD RAM, CG RAM or symbol register address.
(7) RAM Write	1	0	DATA								Writes data into the DD RAM, CG RAM or symbol register address.
(8) NOP	0	0	0	0	0	0	0	0	0	0	Non-operation command
(9) Test Mode	0	0	0	0	0	0	*	*	*	*	Command for IC chip test. Don't use this command.

CHARACTER GENERATOR

Character Generator ROM (CG ROM)
Character Generator ROM (CG ROM)
SED1220 cntains the character generator ROM (CG
ROM) consisted of up to 256 types of characters.
Character size is 5×8 dots.
Tables 5 though 7 show the SED1220** character code.
Concerning the 4 characters from 00 H through 03 H , the
system command selects on which of CG ROM and CG RAM they are to be used.
SED1220 CG ROM is mask ROM and compatible with customized ROM. Contact us for its use in your system. Product name of modified CG ROM is defined as below:
(Example) S ED $1220 \mathrm{D} \underset{\uparrow}{\frac{0}{\uparrow}}$
Digit for CG ROM pattern change

SED1220DA*

SED1220DB*

SED1220DG*

Character Generator RAM (CG ROM)

CGRAM contained in SED1220 enables user programming of character patterns for display signals with higher degrees of freedom.

When using CGRAM, select it using the system command.
Capacity of CGRAM is 160 bits and accepts registration of any 45×8 dots patterns.
Following shows relationship between the CGRAM characters, CGRAM addresses and character code.

It is possible to set a 5×8 character size in this system. In this case, use the $* 7 \mathrm{H} / * \mathrm{FH}$ RAM. Note that the $* 7 \mathrm{H} / * \mathrm{FH}$ data is inverted when a under-bar cursor is used.

Symbol Register

SED1220 contains the symbol register which enable individual symbol setting for displaying on the screen.
Capacity of the symbol register is 120 bits and is capable of displaying up to 120 symbols.
Following shows relationship between the symbol register display patterns, RAM addresses and written data.

Note: When the symbol is 1.5 times or more than the character, it is recommended to drive it using both COMS1 and COMS2.

Static Icon Ram

SED1220 contains the static icon RAM for displaying the static icons in addition to the dynamic icons.
Capacity of static icon RAM is 10 bits (SED1220/1221/ 1222) or 20 bit (SED122A) and is capable of displaying
up to 5 icons (SED1220/1221/1222) or 10 icons (SED122A).
Following shows relationship between the static icons functions, static icon RAM addresses and written data.
<SEGSA, B, C, D, E >

Function	RAM address	Static icon data								Display
		D7 - ${ }^{\text {a }}$ - 0								SEGSABCDE
Display On/Off	20 H	*	*	*	0	0	1	1	1	
Blink On/Off	21H	*	*	*	1	0	0	0	1	

< SEGSF, G, H, I, J >

Function	RAM address	Static icon data									Display
		D7 -								SEGSFGHIJ ㅁㅁㅁㅍㅍㅁ 	
Display On/Off	22 H	*	*	*	0	0	1	1	1		
Blink On/Off	23H	*	*	*	1	0	0	0	1		

*: Blank
1: Display or blink on
0: Display or blink off
fblink: $1-2 \mathrm{~Hz}$

Electronic Volume RAM (register)

SED1220 contains the electronic volume function for controlling the liquid crystal drive voltage V5 and density of liquid crystal display. The electronic volume function enables to select one of 32 voltage status of the liquid
crystal drive voltage V5 by writting 5-bit data to the electronic volume RAM.
Following shows relationship between RAM addresses set by the electronic volume and written data.

Function	RAM address	Electronic volume data								Condition	Vev
		D7									
Electronic volume data	28 H	*	*	*	0	0	0	0	0	0	Vreg-0
		*	*	*	0	0	0	0	1	1	Vreg- α
		*	*	*	0	0	0	0	0	2	Vreg-2 α
							:			$\overline{:}$	
		*	*	*	1	1	1	0	1	29	Vreg-29 ${ }^{\text {a }}$
		*	*	*	1	1	1	1	0	30	Vreg-30 α
		*	*	*	1	1	1	1	1	31	VREG-31 α
	29H	*	*	*	*	*					For testing

* : Blank

Note : Do not use the address " 29 H ". It is for testing

$$
\alpha=\operatorname{VREG} / 150
$$

ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit
Power supply voltage (1)		Vss	$-6.0 \sim+0.3$	V
Power supply voltage (2)		V_{5}, Vout	-7.0~+0.3	V
Power supply voltage (3)		$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$	V5~+0.3	V
Input voltage		Vin	Vss-0.3~+0.3	V
Output voltage		Vo	Vss-0.3~+0.3	V
Operating temperature		Topr	-30~+85	${ }^{\circ} \mathrm{C}$
Storage temperature	TCP	$\mathrm{T}_{\text {str }}$	$-55 \sim+100$	${ }^{\circ} \mathrm{C}$
	Bare chip		$-65 \sim+125$	

Notes: 1. All the voltage values are based on VDD $=0 \mathrm{~V}$.
2. For voltages of V_{1}, V_{2}, V_{3} and V_{4}, keep the condition of $V_{D D} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5}$ and $V_{D D} \geq V_{s S}$ $\geq \mathrm{V} 5 \geq$ Vout at all times.
3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction. In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the reliability of the LSI.

DC CHARACTERISTICS

VDD $=0 \mathrm{~V}$, Vss $=-3.6 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified.

Frame frequency	ffR	$\mathrm{Ta}=25^{\circ} \mathrm{C}$ VSS=-3.0V	70	100	130	Hz	${ }^{*} 10$
External clock frequency	fck	Display of 2 lines		23.4		KHz	${ }^{*} 10{ }^{* 11}$
	fck	Display of 3 lines		33.8		KHz	${ }^{*} 10{ }^{*} 11$

Reset time	tR		1.0			$\mu \mathrm{~s}$	${ }^{*} 7$
Reset pulse width	tRW		10			$\mu \mathrm{~s}$	${ }^{*} 8$
Reset start time	tres		50			ns	${ }^{*} 8$

Dynamic system

	Input voltage	VS1		-2.3	-2.1	-1.9	V	*9
	Amplified voltage output voltage	Vout	When voltage is tripled	-6.9	-6.3	-5.7	V	Vout
	Voltage follower operating voltage	V5		-7.0		-4.0	V	
	Reference voltage	VREG	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-2.06	-2.0	-1.94	V	

*1: A wide operating voltage range is guaranteed but an abrupt voltage variation in the access status of the MPU is not guaranteed.
*2: When the voltage is Tripled, care must be paid to supply the voltage Vss so that operating voltage of Vout and V5 may not be exceeded.
*3: D0~D5, D6 (SCL), D7 (SI), A0, RES, $\overline{\mathrm{CS}} \overline{\mathrm{WR}}(\mathrm{E})$, P/S, IF
*4: This is a resistance value when a voltage of 0.1 V is applied between output pin SEGn, SEGSn, COMn or COMSn, and each power pin ($\mathrm{V}_{1}, \mathrm{~V} 2, \mathrm{~V} 3$ or V 4). It is specified in the range of operating voltage (2).

RON $=0.1 \mathrm{~V} / \Delta \mathrm{I}$
($\Delta \mathrm{I}$: Current flowing when 0.1 V is applied between the power and output)
*5: Character " " display. This is applicable to the case where no access is made from the MPU and the built-in power circuit and oscillating circuit are in operation.
*6: Current consumption when data is always written by fcyc.
The current consumption in the access state is almost proportional to the access frequency (fcyc). When no access is made, only IdD (I) occurs.
*7: tR (reset time) indicates the internal circuit reset completion time from the edge of the RES signal. Accordingly, the SED1220 usually enters the operating state after tr .
*8: Specifies the minimum pulse width of the RES signal. It is reset when a signal having the pulse width greater than trw is entered.

*9: When operating the boosting circuit, the power supply Vss must be used within the input voltage range.
*10: The fosc frequency of the oscillator circuit for internal circuit drive may differ from the fBST boosting clock on some models. The following provides the relationship between the fosc frequency, fBST boosting clock, and fFR frame frequency.
foSC $=($ No. of digits $) \times(1 /$ Duty $) \times$ fFR
fBST $=(1 / 2) \times(1 /$ No. of digits $) \times$ foSC
*11: When performing the operations using an external clock, not taking advantage of the built-in oscillation circuit, input the waveforms indicated below. Meanwhile, while using an external clock but when clock inputs are not being made, fix it to "H". (Normal High)
<Incase the external clock = fosc>

- Duty $=($ th/tosc $) \times 100=20 \sim 30 \%$
- fosc $=1 /$ tosc

<Incase the external clock $=4 \times$ fosc>
- Duty $=($ th $/$ tosc $) \times 100=50 \%$
- fosc $=1 /$ tosc

TIMING CHARACTERISTICS

(1) MPU Bus Write Timing (80 series)

$\left[\mathrm{Ta}=-30\right.$ to $85^{\circ} \mathrm{C}$, $\mathrm{Vss}=-3.6 \mathrm{~V}$ to -2.4 V]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time Address setup time $\overline{\mathrm{CS}}$ setup time	A0, $\overline{C S}$	tAH8 tAW8 tAC8	Every timing is specified on the basis of 20% and 80% of Vss.	$\begin{array}{r} 30 \\ 60 \\ 0 \\ \hline \end{array}$	$-$	ns ns ns
System cycle time	$\overline{\mathrm{WR}}$	tCYC8		650	-	ns
Write "L" pulse width (WR)		tCCL		150	-	ns
Write "H" pulse width (WR)		tcch		450	-	ns
Data setup time Data hold time	D0 ~ D7	$\begin{aligned} & \text { tDS8 } \\ & \text { tDH8 } \end{aligned}$		100 50	-	ns ns

$\left[\mathrm{Ta}=-30\right.$ to $85^{\circ} \mathrm{C}$, $\mathrm{Vss}=-3.3 \mathrm{~V}$ to $\left.-2.7 \mathrm{~V}\right]$

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time Address setup time $\overline{\mathrm{CS}}$ setup time	A0, $\overline{C S}$	tAH8 tAW8 tAC8	Every timing is specified on the basis of 20% and 80% of Vss.	$\begin{array}{r} \hline 10 \\ 60 \\ 0 \\ \hline \end{array}$	$-$	ns ns ns
System cycle time	$\overline{W R}$	tCYC8		500	-	ns
Write "L" pulse width (WR)		tCCL		100	-	ns
Write "H" pulse width (WR)		tcch		350	-	ns
Data setup time Data hold time	D0 ~ D7	$\begin{aligned} & \text { tDS8 } \\ & \text { tDH8 } \end{aligned}$		$\begin{array}{r} 100 \\ 20 \end{array}$	-	ns ns

*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25 ns (excluding RES input).

Vss $\times 0.8$ [V]
Vss $\times 0.2$ [V]

*2: tCCL is specified based on an overlap period of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ "L" levels.
(2) MPU Bus Write Timing (68 series)

$\left[\mathrm{Ta}=-30\right.$ to $85^{\circ} \mathrm{C}, \mathrm{V}$ SS $=-3.6 \mathrm{~V}$ to $\left.-2.4 \mathrm{~V}\right]$

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address setup time Address hold time $\overline{\mathrm{CS}}$ setup time	A0, $\overline{\mathrm{CS}}$	tAW6 tAH6 tAC6	Every timing is specified on the basis of 20% and 80% of Vss.	$\begin{array}{r} 60 \\ 30 \\ 0 \end{array}$	$-$	ns ns ns
System cycle time	$\overline{\text { WR }}$	tcyc6		650	-	ns
Enable "L" pulse width (WR)		tewL		150	-	ns
Enable "H" pulse width (WR)		tEWH		450	-	ns
Data setup time Data hold time	D0 ~ D7	$\begin{aligned} & \text { tDS6 } \\ & \text { tDH6 } \end{aligned}$		$\begin{array}{r} 100 \\ 50 \\ \hline \end{array}$	-	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

$\left[\mathrm{Ta}=-30\right.$ to $85^{\circ} \mathrm{C}, \mathrm{Vss}=-3.3 \mathrm{~V}$ to -2.7 V]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address setup time	A0, $\overline{C S}$	taw6	Every timing is specified on the basis of 20% and 80% of Vss.	60	-	ns
Address hold time		tAH6		10	-	ns
$\overline{\mathrm{CS}}$ setup time		tac6		0	-	ns
System cycle time Enable "L" pulse width (WR) Enable "H" pulse width (WR)	$\overline{W R}$	tcyc6		500	-	ns
		tewL		100	-	ns
		tewh		350	-	ns
Data setup time	D0 ~ D7	tDS6		100	-	ns
Data hold time		tDH6		20	-	ns

*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25ns (excluding RES input).

*2: tEWH is specified based on an overlap period of CS "L" and E "H" levels.
(3) Serial Interface

$\left[\mathrm{Ta}=-30\right.$ to $85^{\circ} \mathrm{C}, \mathrm{Vss}=-3.6 \mathrm{~V}$ to $\left.-2.4 \mathrm{~V}\right]$

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle SCL "H" pulse width SCL "L" pulse width	SCL	$\begin{aligned} & \text { tSCYC } \\ & \text { tSHW } \\ & \text { tSLW } \end{aligned}$	Every timing is specified on the basis of 20% and 80% of Vss.	$\begin{array}{r} 1000 \\ 300 \\ 300 \end{array}$		ns ns ns
Address setup time Address hold time	A0	$\begin{aligned} & \text { tSAS } \\ & \text { tSAH } \end{aligned}$		$\begin{array}{r} 50 \\ 300 \end{array}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
Data setup time Data hold time	SI	$\begin{aligned} & \mathrm{tSDS} \\ & \mathrm{tSDH} \end{aligned}$		$\begin{aligned} & 50 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
CS-SCL time	CS	$\begin{aligned} & \text { tCSS } \\ & \text { tcsh } \end{aligned}$		$\begin{aligned} & 150 \\ & 700 \end{aligned}$		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$

*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25 ns (excluding RES input).

MPU INTERFACE (REFERENCE EXAMPLES)

The SED1220 Series can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the SED1220 Series can be operated by less signal lines.

80 Series MPU

68 Series MPU

Serial Interface

INTERFACE TO LCD CELLS (REFERENCE)

12 columns by 3 lines, 5×8-dot matrix segments and symbols

12 columns by 2 lines, 5×8-dot matrix segments and symbols

12 columns by 2 lines, 5×8-dot matrix segments and symbols

12 columns by 2 lines, 5×8-dot matrix segments and symbols

LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS)

SEG 1
SEG 2
SEG 3
SEG 4
SEG 5

Instruction Setup Example
 (Reference Only)

Waiting for 10 sec or more

Command input:

(Asterisk indicates any command sequence.)
(1) NOP command
(2) System setup command
() Electronic volume register setup

- Address: 28 H
- Data: (, , ,)
() Power save command
- PS: Off (Power save)
- O: On (Oscillation)
(5) Power control commands
- P, VF, VC: On
(6) RAM address setup 1)
(7) Data writing ${ }^{1)}$

(2) Display mode

Notes 1) Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area must satisfy the following conditions (for RAM clear).

- DDRAM: Write the 20H data (character code).
- CGRAM: Write the 00 H data (null data).
- Symbol register: Write the 00 H data (null data).

As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not, unexpected display may result.
2) Since it is specified based on rise characteristics of the booster, power control and voltage follower circuits, time to be set differs depending on external capacity. Be sure to set it after the external capacity is confirmed.
3) A display of the dynamic drive series is turned on when the on command is input and the static icon is turned on using the static icon control command.
To turn both on at the same time when the display is turned on, execute display on/off command and static icon control within 1 frame period.
(3-1) Selecting the Standby mode

(4-1) Selecting the Sleep mode

(3-2) Releasing the Standby mode

(4-2) Releasing the Sleep mode

Instruction Setup Example of SED1220 series

(1) Initial setup
(2) display ON "EPSON"
(3) Display ON the Icon
(4) Standby Mode sequence
(5) Releasing the Standby Mode sequence
<Diagram of SED1220Txx and LCD Panel>

(1) Initial setup
(1.1) Vdd-Vss Power ON
(1.2) Power regulation
(1.3) Input of RESET signal
(1.4) Command Status

- Display ON/OFF :OFF
- Power save :OFF
- Power control :OFF
- System reset :OFF
- Electronic Volume $\quad:(0,0,0,0,0)$
- Static display control :OFF
- Others are undefined.
(1.5) Waiting for $10 \mu \mathrm{sec}$ or more
(1.6) Command Input: $\left(\left(^{*}\right)\right.$ indicates any command sequence.)
(a) System Setup command: CGRAM \rightarrow Not use, 3lines, COM Left shift

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	1	0	0	1	0	0

(*) Electronic volume resister setup: Data $\rightarrow(0,0,0,0,0,0)$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0

(*) Power save command: PS $\rightarrow 0,0 \rightarrow 1$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	$0 / 1$	$0 / 1$	1	0

(d) Power Control command: P, VF, VC $\rightarrow 1$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	1	1	1

(e) (f) RAM address setup, Data writing

- RAM address setup: Set address is 30 H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	1	0	0	0	0

- Data writing: All data $\rightarrow 20 \mathrm{H}$ (for 1 Line)

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0

- RAM address setup: Set address is 40 H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	0	0	0	0	0	0

- Data writing: All data $\rightarrow 20 \mathrm{H}$ (for 2 line)

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0

- RAM address setup: Set address is 50 H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	0	1	0	0	0	0

- Data writing: All data $\rightarrow 20 \mathrm{H}$ (for 3 Line)

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0

- End of Initialization
(2) Display ON "EPSON"
(2.1) RAM address setup command: 30 H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	1	0	0	0	0

(2.2) Data writing command: Writing "EPSON"

| A0 | WR | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | E: 45 H

(2.3) Waiting for 20 ms or more
(2.4) Display ON/OFF control command: $\mathrm{B}, \mathrm{C} \rightarrow 0, \mathrm{D} \rightarrow 1$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	0	0	1

Display ON 5×7 Dots "EPSON"

(3) Display ON The Icon: Valid in Standby mode only
(3.1) Display ON/OFF command: D \rightarrow OFF

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	0	0	0

(3.2) Static display control command: $1 \sim 2 \mathrm{~Hz}$ Blink

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0
0	0	1	0	1	0	0	0	0	1
1	0	0	0	0	1	0	0	0	0

(3.3) Power save command: $\mathrm{PS} \rightarrow \mathrm{ON}, 0 \rightarrow \mathrm{ON}$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	$0 / 1$	$0 / 1$	1	1

(3.4) Power control commands: $\mathrm{P}, \mathrm{VF}, \mathrm{VC} \rightarrow \mathrm{OFF}$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	0	0	0

Display ON the Icon

(4) Releasing the Standby Mode
(4.1) Power save command: PS $\rightarrow 0,0 \rightarrow 1$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	$0 / 1$	$0 / 1$	1	0

(4.2) Power control commands: $\mathrm{P}, \mathrm{VF}, \mathrm{VC} \rightarrow 1$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	1	1	1

(4.3) Waiting for 20 ms or more
(4.4) Display ON/OFF command: $\mathrm{D} \rightarrow 1$

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	0	0	1

END of Releasing the Standby mode

Option List

SED1220 provides the optional functions as described in the following. Being adaptable to the customer's optional demand, contact the Business Department of our company when installed.

- Our product name corresponding to a customer's option is defined as shown below:
(Example) SED1220D XB
Shipping form: A (AL pad product) or B (metal bump product)

Option corresponding digit

Machine type: $0(12$ digits $\times 3$ lines) or 1 (12 digits $\times 2$ lines)

1. Specification of Character Generator ROM (CGROM)
SED1220 integrates a character generator ROM which can generate a maximum of 256 type characters. The size of these characters is composed of 5×7 (8) dots.
Being a mask ROM, the SED 1220 CGROM is adaptable to the character generator ROM exclusive for the customer, too.
For our standard CGROMs, refer to the Character Fonts Table.
2. Specification of Liquid Crystal Driver Voltage Bias Value.
SED1220 integrates a liquid crystal diver voltage generator circuit. Its 5 -volt potential is divided into resistance inside of IC to generate $1-\mathrm{V}, 2-\mathrm{V}, 3-\mathrm{V}$ or $4-\mathrm{V}$ potential as required for the liquid crystal driver. Further, the $1-\mathrm{V}, 2-\mathrm{V}, 3-\mathrm{V}$ or $4-\mathrm{Vpotential}$ is converted into impedance by a voltage follower to be supplied to the liquid crystal driver circuit.
Either $1 / 5$ or $1 / 4$ bias value can be selected as demanded by the customer.
Our standard bias value is preset to $1 / 5$.
3. Specification of Reference Voltage of Liquid Crystal Driver Voltage Regulation Circuit.
SED1220 integrates a voltage regulation circuit using a booster voltage as its power supply to generate 5 V for the liquid crystal driver via the voltage regulation circuit.
The voltage regulation circuit integrates a reference voltage regulator VREG.
The customer can select a specification of using either the internal reference voltage or external Vss reference voltage.
Our standard specification is preset to the internal reference voltage.
4. Power Supply to Booster Circuit

SED1220 integrates a booster circuit.
The customer can select a specification of using either the regulator output VS1 or VSS as the supply voltage to the booster circuit.
Our standard specification is preset to the regulator output Vs1.
5. External Clock Specifications

SED1220 integrates an external clock terminal and there are two clock specifications, f and $4 \times f$ oscillation.
Either of them can be selected on your request.

	Internal oscillation	External clock f osc.	External clock $4 \times$ f osc.
Standard	\bigcirc	\bigcirc	\times
Optional	\bigcirc	\times	\bigcirc

The standard external clock specification is set to fosc.
6. Reset Signal Input Polarity Specifications SED1220 inputs reset signal from the reset terminal using edge detection and I/F specification $80 / 68$ series can be selected according to this signal level. RES input polarity can also be selected on your request.

RES input polarity	Type	
	Standard	Optional
\sqcap	68 series	80 series
\llcorner	80 series	68 series

is set to the 68 series and \bigsqcup to the 80 series as the standard RES input polarities.
7. Pad Layout Specifications of COMS1 Symbol Terminal
On SED1220, pad layout of COMS1 symbol terminal can be changed. COMS1 pad layout can be selected on your request.

	Standard	Optional
Pad No	Pad Name	Pad Name
65	COMS1	COM1
66	COM1	COM2
67	COM2	COM3
68	COM3	COM4
69	COM4	COM5
70	COM5	COM6
71	COM6	COM7
72	COM7	COM8
73	COM8	COMS1

SED1225 Series LCD Controller/Drivers

Technical Manual

Contents

OUTLINE 5-1
FEATURES 5-1
BLOCK DIAGRAM 5-2
PIN ASSIGNMENT 5-3
PIN DESCRIPTION 5-6
FUNCTION DESCRIPTION 5-9
COMMAND 5-13
COMMAND LIST 5-16
BUILT-IN MEMORIES 5-17
MAXIMUM ABSOLUTE RATINGS 5-25
DC CHARACTERISTICS 5-26
SIGNAL TIMING CHARACTERISTICS 5-28
MPU INTERFACES (REFERENCE) 5-31
LCD CELL INTERFACE 5-32
LCD DRIVE WAVEFORMS (B WAVEFORMS) 5-34
EXAMPLE OF INSTRUCTION SETUP (REFERENCE) 5-35
OPTION LIST 5-38
CAUTIONS 5-39

OUTLINE

The SED1225 dot-matrix LCD Controller Driver receives 4-bit, 8-bit, or serial data from the microprocessor and displays up to 36 characters, four user-defined characters, and up to 120 symbols.
Up to 256 types of built-in character generator ROMs are provided. Each character font has a 5×8-dot structure. Also, the user-defined character RAM contains four 5×8-dot characters. In addition, a symbolic register can be used for flexible symbol display. The Driver featuring the very low power consumption can drive a handy terminal unit in either Sleep or Standby mode with the minimum power consumption.

FEATURES

- Built-in display data RAM

Can display up to 36 characters, 4 user-defined characters, and 120 symbols.

- Built-in CGROM (for 256-character display), CGRAM (for 4-character display), and symbol register (for 120 symbol display)
- No. of display columns by lines

Normal mode: (12 columns plus 4 signal segments) \times 3 line +120 symbols +10 static symbols
Standby mode: 10 static symbols

- Built-in C\&R oscillators
- Available external clock input
- High-speed MPU interfaces Interface to both 68- and 80-series MPUs Support of 4/8-bit interface
- Support of serial interface
- Character font: 5x8 dots
- Duty ratio: $1 / 18,1 / 26$
- Simple command setup
- Built-in LCD drive power circuit: Power amp and regulator
- Built-in electronic controls
- Very low power consumption $30 \mu \mathrm{~A}$ (including the operating current of the built-in power supply during normal operation)
$10 \mu \mathrm{~A}$ (Static icon display during Standby operation $5 \mu \mathrm{~A}$ (Display off during Sleep operation)
- Power supplies

VDD - Vss: -1.7 to -3.6 V
Vdd - V5: -3.0 to -6.0 V

- Wide operating temperature range: $\mathrm{Ta}=-30$ to $+85^{\circ} \mathrm{C}$
- CMOS process
- Package design Chip (with gold bump): SED1225D*B TCP: SED1225T**
- This IC package is not designed to have a radiation or strong light resistance.

BLOCK DIAGRAM

PIN ASSIGNMENT

SED1225D $\underset{\uparrow}{* *}$

CGROM pattern version number
Chip size: $\quad 7.85 \times 1.97 \mathrm{~mm}$
Pad pitch: $\quad 90 \mu \mathrm{~m}(\mathrm{~min})$
Chip thickness (Reference): $625 \mu \mathrm{~m}$
Au bump specifications
Bump size:
Pad Nos. 59 to 72 , and 155 to 171: $78 \mu \mathrm{~m} \times 59 \mu \mathrm{~m}$
Pad Nos. 1 to 58, and 73 to 154 : $\quad 59 \mu \mathrm{~m} \times 78 \mu \mathrm{~m}$
Bump height (Reference): $22.5 \mu \mathrm{~m}$

Pad coordinates (1/2)

PAD		Coordinate	
No.	Name	X	Y
1	Dummy	-3768	-822
2	Dummy	-3678	-822
3	A0	-3349	-822
4	XWR(E)	-3200	-822
5	XCS	-3050	-822
6	D7(SI)	-2901	-822
7	D6(SCL)	-2751	-822
8	D5	-2602	-822
9	D4	-2452	-822
10	D3	-2303	-822
11	D2	-2153	-822
12	D1	-2004	-822
13	D0	-1854	-822
14	XLE1	-1705	-822
15	XLE1	-1615	-822
16	XLE2	-1466	-822
17	XLE2	-1376	-822
18	Vdd	-1286	-822
19	Vdd	-1197	-822
20	Vss	-1107	-822
21	Vss	-1017	-822
22	V5	-868	-822
23	V_{5}	-778	-822
24	V4	-629	-822
25	V_{4}	-539	-822
26	V3	-389	-822
27	V3	-300	-822
28	V_{1}	-150	-822
29	V_{1}	-60	-822
30	(VReg1)	89	-822
31	(VREG1)	179	-822
32	Vreg2	328	-822
33	Vregr	418	-822
34	OCA	567	-822
35	OCA	657	-822
36	OCB	807	-822
37	ОСВ	896	-822
38	OCC	1046	-822
39	OCC	1136	-822
40	OCD	1285	-822
41	OCD	1375	-822
42	OCE	1524	-822
43	OCE	1614	-822

PAD		Coordinate	
No.	Name	X	Y
44	Vss	1718	-822
45	Vss	1808	-822
46	C86	1973	-822
47	PS	2122	-822
48	IF	2272	-822
49	RES	2421	-822
50	XCK	2571	-822
51	VS1	2720	-822
52	(FSA)	2893	-822
53	(FSB)	3065	-822
54	(FSC)	3237	-822
55	(FS3)	3409	-822
56	(VDD)	3589	-822
57	(VDD)	3678	-822
58	(VDD)	3768	-822
59	(FS2)	3758	-628
60	(FS1)	3758	-456
61	(FS0)	3758	-283
62	COMSA	3758	-179
63	COMS1	3758	-90
64	COM1	3758	0
65	COM2	3758	90
66	COM3	3758	179
67	COM4	3758	269
68	COM5	3758	359
69	COM6	3758	449
70	COM7	3758	538
71	COM8	3758	628
72	COMS1	3758	718
73	Dummy	3768	822
74	Dummy	3678	822
75	SEGS1	3409	822
76	SEGS2	3320	822
77	SEG1	3230	822
78	SEG2	3140	822
79	SEG3	3050	822
80	SEG4	2961	822
81	SEG5	2871	822
82	SEG6	2781	822
83	SEG7	2692	822
84	SEG8	2602	822
85	SEG9	2512	822
86	SEG10	2423	822

Pad coordinates (2/2)

PAD		Coordinate	
No.	Name	X	Y
87	SEG11	2333	822
88	SEG12	2243	822
89	SEG13	2153	822
90	SEG14	2064	822
91	SEG15	1974	822
92	SEG16	1884	822
93	SEG17	1795	822
94	SEG18	1705	822
95	SEG19	1615	822
96	SEG20	1526	822
97	SEG21	1436	822
98	SEG22	1346	822
99	SEG23	1256	822
100	SEG24	1167	822
101	SEG25	1077	822
102	SEG26	987	822
103	SEG27	898	822
104	SEG28	808	822
105	SEG29	718	822
106	SEG30	629	822
107	SEG31	539	822
108	SEG32	449	822
109	SEG33	359	822
110	SEG34	270	822
111	SEG35	180	822
112	SEG36	90	822
113	SEG37	1	822
114	SEG38	-89	822
115	SEG39	-179	822
116	SEG40	-268	822
117	SEG41	-358	822
118	SEG42	-448	822
119	SEG43	-538	822
120	SEG44	-627	822
121	SEG45	-717	822
122	SEG46	-807	822
123	SEG47	-896	822
124	SEG48	-986	822
125	SEG49	-1076	822
126	SEG50	-1165	822
127	SEG51	-1255	822
128	SEG52	-1345	822
129	SEG53	-1435	822

PAD		Coordinate	
No.	Name	X	Y
130	SEG54	-1524	822
131	SEG55	-1614	822
132	SEG56	-1704	822
133	SEG57	-1793	822
134	SEG58	-1883	822
135	SEG59	-1973	822
136	SEG60	-2062	822
137	SEGS4	-2152	822
138	SEGS5	-2242	822
139	Dummy	-2332	822
140	Dummy	-2422	822
141	Dummy	-2512	822
142	COM24	-2602	822
143	COM23	-2692	822
144	COM22	-2781	822
145	COM21	-2871	822
146	COM20	-2961	822
147	COM19	-3050	822
148	COM18	-3140	822
149	COM17	-3230	822
150	COM16	-3320	822
151	COM15	-3409	822
152	Dummy	-3589	822
153	Dummy	-3678	822
154	Dummy	-3768	822
155	COM14	-3758	718
156	COM13	-3758	628
157	COM12	-3758	538
158	COM11	-3758	449
159	COM10	-3758	359
160	COM9	-3758	269
161	COMS2	-3758	179
162	SEGSA	-3758	90
163	SEGSB	-3758	0
164	SEGSC	-3758	-90
165	SEGSD	-3758	-179
166	SEGSE	-3758	-269
167	SEGSF	-3758	-359
168	SEGSG	-3758	-449
169	SEGSH	-3758	-538
170	SEGSI	-3758	-628
171	SEGSJ	-3758	-718

PIN DESCRIPTION

Power Supply Pins

Pin Name	I/O	Description	No. of Pins
VDD	Power supply	Connects to the logic power supply. This is common to the Vcc power pin of the MPU.	1
$\mathrm{~V}_{\text {ss }}$	Power supply	OV power pin connected to system ground (GND)	2
$\mathrm{V}_{1}, \mathrm{~V}_{3}$ $\mathrm{~V}_{4}, \mathrm{~V}_{5}$	Power supply	Multi-level LCD drive power supplies. A capacitor is required for external stabilization.	4
$\mathrm{~V}_{51}$	O	Output pin of oscillator (OSC) power voltage. A capacitor is required for stabilization.	1

Notes: Two Vss pins are provided. As they are commonly connected inside the IC, an input into any Vss can be used if power impedance is low. To have the enough noise resistance, however, the Vss power input from each pin is recommended.

LCD Power Pins

Pin Name	I/O	Description	No. of Pins
VREG2	O	Output pins of LCD voltage and amp source power supplies. A capacitor is required for stabilization.	1
OCA			5
OCB	O	A voltage capacitor pin. A capacitor is required for amplification.	
OCD	OCE		

LED Drive Terminal

Pin Name	I/O	Description	No. of Pins
XLE1 XLE2	O	An Nch open drain output terminal to drive the LED. Connects to the LED cathode.	2

System Bus Connector Pins

Pin Name	I/O	Descrition										No. of Pins
$\begin{gathered} \text { D7(SI) } \\ \text { D6(SCL) } \\ \text { D5 to D0 } \end{gathered}$	1	An 8-bit input Pins D7 and D logical low. Open : May be better May b	data bus 6 functi "IF "H" "L" "H" "L" open. noise-re high or	be as D7 SI D7 D7 D7 D7 wev tanc w.	connect er, the chara Howeve	d to the data and otential teristics. the pot	standa d clock is recom ential m	$\begin{aligned} & \text { ard 8- or } \\ & \text { < inputs } \\ & \hline \text { D3 to D0 } \\ & \hline \text { OPEN } \\ & \text { D3-D0 } \\ & \text { OPEN } \\ & \text { D3-D0 } \\ & \text { OPEN } \\ & \hline \end{aligned}$	16-bit respec d to fix fixed.	MPU ely AO A0 A0 A0 A0 A0 to ha	ata bus. S is XWR E E XWR XWR	8
A0	1	Usually, the most significant bit of MPU address bus is connected to identify data or command. 0: Indicates D0 to D7 are command. 1: Indicates D0 to D7 are display data.										1
RES	I	Initializes when RES is set to low. The system is reset at RES signal level.										1
XCS	I	A Chip Select signal. The address bus signal is decoded and entered. This is valid when low.										1
XWR	I	- When an 80-series MPU is connected Active low. The WR signal of 80 -series MPU is connected. The data bus signal is fetched at the rising edge of XWR signal. - When a 68-series MPU is connected Active high. Used as an Enable Clock input of 68 -series MPU. The data bus signal is fetched at the falling edge of XWR signal.										1
PS	1	A switching pin between serial data input and parallel data input.										1
		P/S	Chip s		Data/C	mmand		ata	Serial Clock			
		"H"	XC			A0	D0 to	to D7	-			
		"L"	XC			A0		SI	SCL			
IF	1	An interface data length select pin during parallel data input. - 8-bit parallel input if IF=high - 4-bit parallel input if IF=low This pin is connected to VdD or Vss if PS=low.										1
C86	1	An MPU interface switch pin. - 68-series MPU interface if C86=high - 80-series MPU interface if C86=low This pin is connected to VdD or Vss if PS=low.										1
XCK	1	An external clock input pin. It must be fixed to high to use the internal oscillator. To use an external clock input, turn the internal oscillator OFF by issuing the command.										1

LCD Driver Signals

Dynamic drive pins

Pin Name	I/O	Description	No. of Pins
COM1 to COM24	O	Common signal output pins (for character display)	24
COMS1, COMS2	O	Common signal output pins (for non-character display) COMS1, COMS2: Common outputs for symbol display	3
SEG1 to SEG60	O	Segment signal output pins (for character display)	60
SEGS1, 2 4,5	O	Segment signal output pins (for non-character display) SEGS1, 2, 4, 5: Segment outputs for signal output	4

Note: As the same COMS1 signal is output at two pins, one of them must be used.
Static drive pins

Pin Name	I/O	Description	No. of Pins
COMSA	O	Common signal output pin (for icon display)	1
SEGSA, B C, D, E, F G, H, I, J	O	Segment signal output pin (for icon display)	10

Notes: We recommend to separate LCD panel electrodes of static drive pins from those of dynamic drive pins. If these patterns are closely located, the LCD and its electrodes may be deteriorated.

FUNCTION DESCRIPTION

MPU Interfaces

Interface type selection

The SED1225 can transfer data via the 4 - or 8-bit data bus or via the serial data input (SI). The parallel or serial data input can be selected by setting the PS pin to high or low (see Table 1).

Table 1

PS	Type	XCS	A0	XWR	SI	SCL	D0 to D7
H	Parallel input	XCS	A0	XWR	-	-	D0 to D7
L	Serial input	XCS	A0	H, L	SI	SCL	-

The SED1225 has the C86 pin for MPU selection. If the parallel input is selected (PS=high), if can be connected directly to the 80 -series or 68 -series MPU by setting the

C86 pin to high or low (see Table 2). Also, the 8-bit or 4-bit data bus can be selected by the IF pin signal.

Table 2

C86 pin signal	Type	A0	XWR	XCS	D0 to D7
"L"	80 series	A0	XWR	XCS	D0 to D7
"H"	68 series	A0	E	XCS	D0 to D7

Interface to 4-bit MPU

If the 4-bit interface is selected (IF=low), the 8 -bit command and data, and its address are transferred in two times.

Note: During continuous writing, the write time greater than the system cycle time (tcyc) must be set before the subsequent write operation.

Serial interface

The serial interface consists of an 8-bit shift register and a 3-bit counter. During chip select (XCS=low), an SI input and an SCL input can be accepted. During no chip select (XCS=high), the shift register and counter is initialized (reset).
Serial data of D7 to D0 are fetched in this order from the serial data input pin (SI) at the rising edge of serial clock. The data is converted into 8 -bit parallel data at the rising edge of the eighth serial clock.
The serial data input (SI) is identified to have the display data or command by the A0 input. It is display data if $\mathrm{A} 0=$ high, and it is command if $\mathrm{A} 0=$ low.

The A 0 input is fetched and identified at the rising edge of " $8 \times$ n-th" serial clock (SCL). Figure 1 shows a serial interface timing chart.
The SCL signals must be well protected from the far-end reflection and ambient noise due to increased line length. The operation checkout on the actual machine is recommended.
Also, we recommend to repeat periodical command writing and status refreshing to avoid a malfunction due to noise.

Figure 1

Data bus signal identification

The SED1225 identifies the data bus based on a combination of A0, AWR and E signals as defined on Table 3.

Table 3

Common	68 Series	80 Series	Function
$A 0$	E	XWR	
1	1	0	Writes in the RAM and symbol register.
0	1	0	Writes (commands) in the internal register.

Chip Select

The SED1225 has an Chip Select pin (XCS) to allow an MPU interface input only if XCS=low.
During no chip select status, all of D0 to D7, A0, XWR, SI and SCL inputs are made invalid. If the serial input interface is selected, the shift register and counter are reset.
However, the Reset signal is entered independent from the XCS status.

Power Circuit

The built-in power circuit featuring the low power
consumption generates the required LCD drive voltages. The power circuit consists of an amp and a voltage regulator.

Amp

When the capacitors are connected to the OCA, OCB, OCC, OCD, OCE, VREG2 pins, the LCD drive voltages are generated.
As the amp uses the signals from the oscillator, the oscillator or an external clock must be operating. The following provides the potential relationship.

LEC drive voltages

Voltage regulator

- Voltage regulator using the electronic control function Use the electronic control function and set the voltages appropriate to the LCD panel driving.
When a 5-bit data is set in the electronic control register, one of 32 -state voltages can be set for LCD driving. Before using the electronic control function, turn ON the power circuit by issuing the power control command.
The following explains how to calculate the voltages using the electronic control function.

V5 $=4 \times$ VEV
Conditions:
VEV $=$ VREG2 -X
where,

$$
\begin{aligned}
& \mathrm{X}=\mathrm{n} \alpha(\mathrm{n}=0,1, \ldots, 31) \\
& \alpha=\operatorname{VREG} 2 / 95
\end{aligned}
$$

No.	Electronic control register	X	V_{5}
0	$(0,0,0,0,0)$	0	Large
1	$(0,0,0,0,1)$	1α	\cdot
2	$(0,0,0,1,0)$	2α	\cdot
3	$(0,0,0,1,1)$	3α	\cdot
\cdot	\cdot	\bullet	\cdot
\cdot	\cdot	C	\cdot
30	$(1,1,1,1,0)$	$\mathrm{n}-\alpha$	\cdot
31	$(1,1,1,1,1)$	$\mathrm{n} \alpha$	Small

This is reference voltage for the liquid crystal drive power circuit. The Vregz has a temperature characteristics of about $-0.05 \% /$ deg.

External unit connection examples

An external voltage regulation capacitor must be connected to the LCD power pin. The LCD drive voltages are fixed to $1 / 4$ biasing.

1/4 bias example

Note: We recommend to display the capacitance appropriate to the LCD panel size and set up the capacitance by observing the drive signal waveforms.

Power Save mode

The SED1225 supports the Standby and Sleep modes to save the power consumption during system idling.

- Standby mode

The Standby mode is selected or released by the Power Save command. During Standby mode, only the static icon is displayed.

1. LCD display outputs

COM1 to COM16, COMS1, COMS2:
VDD level
SEG1 to SEG60, SEGS1, 2, 4, 5: VDD level
SEGSA, B, C, D, E, F, G, H, I, J, COMSA:
Can light by static drive
Use the Static Icon RAM to display the static icon with SEGSA, B, C, D, E, F, G, H, I, J and COMSA.
2. DDRAM, CGRAM and symbol register Their write contents do not change. The contents are kept regardless of Standby mode selection or release.
3. The operation mode before selection of Standby mode is kept.
The internal circuits for dynamic display are stopped.
4. Oscillator

The oscillator must be turned ON for static display.

- Sleep mode

To select the Sleep mode, turn OFF the power circuit and oscillator by issuing the command, and clear all data of Static Icon register to zero. Then, issue the Power Save command. The system power consumption will be minimized to almost the stopped status.

1. LCD display outputs

COM1 to COM16, COMS1, COMS2:
VdD level
SEG1 to SEG60, SEGS1, 2, 4, 5:
VDD level
SEGSA, B, C, D, E, F, G, H, I, J, COMSA:
Clear all data of Static
Icon register to zero.
2. DDRAM, CGRAM and symbol register

Their write contents do not change. The contents are kept regardless of Standby mode selection or release.
3. The operation mode before selection of Standby mode is kept.
All internal circuits are stopped.
4. Oscillator

Turn OFF the built-in power supply and oscillator by issuing the Power Save and power control commands.

Reset Circuit

When the RES input is made active, this LSI is initialized.

- Initialization status
(1) Display ON/OFF control
$\mathrm{C}=0$: \quad Cursor off
$\mathrm{B}=0$: \quad Blink off
$\mathrm{DC}=0$: \quad Normal display
$\mathrm{D}=0$: \quad Display off
(2)Power save
$\mathrm{O}=0: \quad$ Oscillating circuit off
PS=0: Power save off
(3) Power control
$\mathrm{P}=0$: \quad Power circuit off
(4) System set
$\mathrm{N}=0$: $\quad 3$ lines
$\mathrm{S} 2, \mathrm{~S} 1=0$: Direction of normal display
CG=0: CGRAM unused
(5) Electronic control

Address: 28 H
Data: $\quad(0,0,0,0,0)$
(6) Static icon

Address: $\quad 20 \mathrm{H}$ to 23 H
Data: $\quad(0,0,0,0,0)$
(7)LED register

Address: 2 AH
Data: $\quad(0,0,0,0,0)$
(8) CG RAM, DD RAM and symbol register

Address: $\quad 00 \mathrm{H}$ to $1 \mathrm{FH}, 30 \mathrm{H}$ to 7 CH
Data: \quad Must be initialized by MPU after reset input because of being indefinite.

Connect the RES terminal to the MPU reset terminal as described in "6-1 MPU Interface", and execute initialization simultaneously with the MPU. However, if the MPU bus and port are put into high impedance for a certain time period by resetting, perform reset input to the SED1225 after the input to the SED1225 has been determined. When the RES terminal becomes "L", each register is cleared and the above setup is established. If initialization by the RES terminal is not performed when power voltage is applied, resetting may be disabled.

COMMAND

Table 4 lists the supported commands. The SED1225 identifies a data bus by a combination of A0, XWR and E signals. It features high-speed processing as the
commands are analyzed and executed in the internal timing only.

- Command outline

Table 4

Command type	Command name	A0	XWR
Display control instruction	Cursor Home	0	0
	Display On/Off Control	0	0
	Power Save	Power Control	0
0	0		
System setup	System Setup	0	0
Address control instruction	Address Setup	0	0
Data input instruction	Data Write	1	0

As the execution time of each instruction depends on the internal processing time of the SED1225, an enough time greater than the system cycle time (tcyc) must be assigned for continuous instruction execution.

- Explanation of commands
(1) Cursor Home

The Cursor Home command presets the Address counter to 30 H , and shifts the cursor to column 1 of line 1 if Cursor Display is ON.

$$
\text { A0 XWR D7 } \quad \text { D0 }
$$

(2) Display On/Off Control

The Display On/Off Control command sets the LCD character and cursor display.

$\mathrm{D}=0$: Turns the display off.
$\mathrm{D}=1$: Turns the display on.
$\mathrm{DC}=0$: Selects the standard size display.
$\mathrm{DC}=1$: Selects the double-height vertical display.
$\mathrm{B}=0$: Turns cursor blinking off.
$B=1$: Turns cursor blinking on.
During blinking, the cursor character is alternately displayed normally and reversely. The normal and reverse display is repeated approximately every one second.
$\mathrm{C}=0$: Does not display the cursor.
$\mathrm{C}=1$: Displays the cursor.

The following provides the relationship between the C and B registers and cursor display.

C	B	Cursor display
0	0	Not displayed
0	1	Not displayed
1	0	Underbar cursor
1	1	Alternate character display normally and reversely

$(C, B)=(0,0)$
$(1,0)$
$(1,1)$

The cursor display position is indicated by the address counter. Accordingly, to move the cursor, change the address counter value by automatic increment by writing the RAM address set command or RAM data.

The following shows the relationship between the DC resistor and display:
(1) $\mathrm{N}=0(1 / 26$ duty $)$

DC=1

The character on the 3rd line will be displayed in double size on the second and third lines by setting $\mathrm{DC}=1$.
(2) $\mathrm{N}=1$ (1/18 duty)

The character on the 1st line will be displayed in double size on the first and second lines by setting $\mathrm{DC}=1$.
(3) Power Save

The Power Save command controls the oscillator and sets or releases the Sleep mode.

0	0	0	1	0	0	$*$	$*$	O	PS

* : Don’t Care

PS=0: Turns the Power Save on. (Release)
$\mathrm{PS}=1$: Turns the Power Save off. (Select)
$\mathrm{O}=0$: Turn the oscillator off. (Stop oscillation)
$\mathrm{O}=1$: Turns the oscillator on. (Oscillation)
(4) Power Control

The Power Control command controls the builtin power circuit operations.

$\mathrm{P}=0$: Turns the power circuit off.
$\mathrm{P}=1$: Turns the power circuit on.
Note: The oscillator must be operating to operate the voltage amp.
(5) System Reset

The System Reset command sets the display direction, the display line, and the use or no use of CGRAM. This command must first be executed after the power-on or reset.

$\mathrm{N}=0$: \quad Displays 3 lines. (1/26 duty)
$\mathrm{N}=1$: Displays 2 lines. (1/18 duty)
S2=0: Normal display
S2=1: Right and left reverse display
S1=0: Normal display
S1=1: Top and bottom reverse display $\mathrm{CG}=0$: Does not use the CGRAM.
$C G=1$: Uses the CGRAM.
(1) Normal display

(2) Horizontal flipping

(3) Vertical flipping

(4) Horizontal vertical flipping

(6) RAM Address Setup

The RAM Address Setup command sets an address into the Address counter to write data into DDRAM, CGRAM and Symbol register.
When the cursor display is ON, the cursor is located at a position corresponding to the DDRAM address set by this command.

$$
\text { A0 XWR D7 } \longrightarrow \text { D0 }
$$

 * : Don't Care
(1) The 00 H to 7 FH address length can be set. To write data in the RAM, set the data write address by this command. When the subsequent data is written continuously, the address is automatically incremented.

RAM map

(7) Data Write

$$
\begin{aligned}
& \text { A0 XWR D7 } \\
& \begin{array}{|l|l|l:l:l|l|}
\hline 1 & 0 & : & \text { DATA } & \text { D0 } \\
\hline
\end{array}
\end{aligned}
$$

(1) This command writes data in the DDRAM, CGRAM or Symbol register.
(2) When this command is executed, the Address counter is incremented by 1 automatically. This allows continuous data writing.

Data write example:
The following gives an example to write a single line of data continuously.

Note: Assign an enough time greater than "tcyc" before executing the next instruction.
Table 4 SED1225 command list

Command	Code										Function
	A0	XWR	D7	D6	D5	D4	D3	D2	D1	D0	
(1) Cursor Home	0	0	0	0	0	1	*	*	*	*	Shifts the cursor to its home position.
(2) Display On/Off Control	0	0	0	0	1	1	C	B	DC	D	Turns on or off the cursor, cursor blinking, double-size display, and data display. $\mathrm{C}=1$: Cursor ON; C=0: Cursor OFF $\mathrm{B}=1$: Blinking ON; $\mathrm{B}=0$: Blinking OFF DC=1: Double-size display; DC=0: Normal display D=1: Display ON; D=0: Display OFF
(3) Power Save	0	0	0	1	0	0	*	*	0	PS	Turns on or off the Power Save mode and oscillator. PS=1: Power Save ON; PS=0: Power Save OFF $\mathrm{O}=1$: OSC ON; O=0: OSC OFF
(4) Power Control	0	0	0	1	0	1	0	0	0	P	Turns on or off the built-in power circuit and voltage follower capacity, and sets the amp frequency. $P=1$: Power circuit ON; $P=0$: Power circuit OFF
(5) System Reset	0	0	0	1	1	0	N	S2	S1	CG	Sets the use or no use of CGRAM and the display direction. $\mathrm{N}=1$: 3-line display; $\mathrm{N}=0$: 2 -line display $C G=1$: Use of CGRAM; CG=0: No use of CGRAM S2=0, S1=0: Normal display S2=0, S1=1: Top and bottom reverse display $\mathrm{S} 2=1, \mathrm{~S} 1=0$: Right and left reverse display $\mathrm{S} 2=1, \mathrm{~S} 1=1: 180$-degree rotation display
(6) RAM Address Setup	0	0	1	ADDRESS							Sets an address of DDRAM, CGRAM or Symbol register.
(7) RAM Write	1	0	DATA								Writes data in the DDRAM, CGRAM or Symbol register.
(8) NOP	0	0	0	0	0	0	0	0	0	0	This is a non-operation command.
(9) Test Mode	0	0	0	0	0	0	*	*	*	*	This is an IC chip test command. Do not use in normal operations.

BUILT-IN MEMORIES

Character Generator ROM (CGROM)

The SED1225 contains up to 126 types of CGROMs. Each character has a 5×8-dot structure.
Tables 5 to 8 defines the SED1225D** character codes. Four characters $(00 \mathrm{H}$ to 03 H$)$ of character codes are used for the CGROM or CGRAM by the System Setup command.

The SED1225's CGROM is a mask ROM and it can be used as a custom CGROM. Consult to our sales agency for details.
The CGROM versions are identified as follows:
Example: SED1225D ${ }_{\underline{\wedge}}{ }^{\text {B }}$
\uparrow
CGROM pattern ID

Table 5 SED1225Dab

Table 6 SED1225Dbb

Table 7 SED1225Dgb

Character Generator RAM (CGRAM)

The SED1225 has a built-in CGRAM to program userdefined character patterns for highly flexible signal and character display.
Issue the System Setup command to use the CGRAM. The CGRAM has the 160-bit storage capacity, and it can
store up to four 5×8-dot character patterns.
The following provides the relationship between CGRAM character patterns and CGRAM addresses and character codes.

Character Code	RAM Address		CGRAM Data								$\begin{array}{\|l\|} \hline \text { Character Display } \\ \hline \text { SEG } \\ \hline \end{array}$	Signal Display	
			D7 -ـ D0									SEGS	
00H	00H to 07H	0	*	*	*	0	1	1	1	1	$\square \square \square \square$	$\square^{1}{ }^{2}$	45
		1	*	*	*	1	0	0	0	0	$\square \square \square \square$	$\square \square$	$\square \square$
		2	*	*	*	1	0	0	0	0	$\square \square \square \square \square$	$\square \square$	$\square \square$
		3	*	*	*	0	1	1	1	1	$\square \square \square \square$	$\square \square$	\square
		4	*	*	*	0	0	0	0	1	$\square \square \square \square \square$	$\square \square$	\square
		5	*	*	*	0	0	0	0	1	$\square \square \square \square \square$	$\square \square$	\square
		6	*	*	*	1	1	1	1	0	- $\square_{\text {- }}^{\square}$		$\square \square$
		7	*	*	*	0	0	0	0	0	$\square \square \square \square \square$	\square	$\square \square$
01H	08H to 0FH	8	*	*	*	0	0	1	0	0	$\square \square \square \square \square$	$\square \square$	$\square \square$
		9	*	*	*	0	0	1	0	0	$\square \square \square \square \square$	$\square \square$	$\square \square$
		A	*	*	*	0	1	1	1	0	$\square \square \square \square \square$	\square	$\square \square$
		B	*	*	*	0	1	1	1	0	$\square \square \square \square \square$	\square	$\square \square$
		C	*	*	*	0	1	1	1	0	$\square \square \square \square \square$	\square	$\square \square$
		D	*	*	*	1	1	1	1	1	$\square \square \square \square \square$		$\square \square$
		E	*	*	*	1	1	1	1	1	- \square -	$\square \square$	$\square \square$
		F	*	*	*	0	0	0	0	0	$\square \square \square \square \square$	$\square \square$	$\square \square$

D7 to D5: Un used
D4 to D0: Character data (1 for display; 0 for no display)
The 5×8-dot character size can also be set. To do so, use the *7H and *FH RAM addresses. However, the *7H and *FH data is reversed if the underbar cursor is used.

Symbol Register

The SED1225 has a built-in Symbol register to allow separate symbol setup on the display panel.
The Symbol register has the 120-bit storage capacity, and it can display 120 symbols. Also, the SED1225 contains a Blink register for every 5-dot blinking.

The following provides the relationship between the Symbol register display patterns, RAM addresses and write data.
(13)

(12)

RAM Address		Corresponding symbol bits							
		D7	D6	D5	D4	D3	D2	D1	D0
60 H to 6BH	0	*	*	BL1	1	2	3	4	5
	1	*	*	BL2	6	7	8	9	10
	:								
	B	*	*	BL12	56	57	58	59	60
70 H to 7BH	0	*	*	BL13	61	62	63	64	65
	1	*	*	BL14	66	67	68	69	70
	-								
	B	*	*	BL24	116	117	118	119	120

BL1 to BL24: Blinking setup (0 for no blinking; 1 for blinking)
Note: If the symbol size is 1.5 times greater than other dots, we recommend to divide and drive the SEG* and COMS1 and COMS2 separately.

Static Icon RAM

The SED1225 has a built-in Static Icon RAM to display a static icon separately from the dynamic icon.
The Static Icon RAM has the 20-bit storage capacity, and
it can display 10 icons. The following provides the relationship between the static icon functions and the static icon, RAM address and write data.
(SEGSA, B, C, D, E)

Function	RAM Address	Static Icon Data								Display
		D7								SEGSA B C D E
Display ON/OFF	20 H	*	*	*	0	0	1	1	1	
Blink ON/OFF	21H	*	*	*	1	0	0	0	1	

(SEGSF, G, H, I, J)

Function	RAM Address	Static Icon Data								Display
		D7 - D0								SEGSA B C D E
Display ON/OFF	22H	*	*	*	0	0	1	1	1	
Blink ON/OFF	23 H	*	*	*	1	0	0	0	1	

*: Unused
1 : Display or blinking
0 : No display or no blinking
f blink : 1 to 2 Hz

Electronic Control RAM (Register)

The SED1225 has the electronic control functions to control LCD drive voltages and to adjust the LCD display density. One of 32 -state LCD voltages can be selected when the 5-bit data is written in the Electronic

Control RAM.
The following provides the relationship between the RAM address and write data by electronic control setup.

Function	RAM Address	Electronic Control Data								Status	VEv
		D7 - D0									
Electronic Control	28 H	*	*	*	0	0	0	0	0	0	Vreg-0
		*	*	*	0	0	0	0	1	1	Vreg- α
		*	*	*	0	0	0	1	0	2	Vreg-2 α
										\vdots	\vdots
		*	*	*	1	1	1	0	1	29	Vreg-29 α
		*	*	*	1	1	1	1	0	30	Vreg-30 α
		*	*	*	1	1	1	1	1	31	Vreg-31 α
	29H	*	*	*	*	*					For test
$\begin{aligned} * & : \text { Unused } \\ \alpha & : \alpha=\text { VREG/95 (1/4biased) } \end{aligned}$											

LED RAM (Register)

The SED1225 has the LED drive functions to drive the LCD by controlling the XLE1 and XLE2 pins.

The following provides the relationship between the RAM address and write data by LED register setup.

Function	RAM Address	LED Register Data						
		D7						
LED ON/OFF Timer	2 AH	$*$	$*$	$*$	$*$	TIM2	TIM1	LED2
LED1								

* : Unused

The following defines the XLE1 and XLE2 pin state depending on the TIM1, TIM2, LED1 and LED2 set values.

LED Register Set Value		Output Status (XLE1, XLE2)
TIM2 TIM1	LED2 LED1	
0	0	XLE = High impedance
0	1	XLE = Low
1	0	Keeps XLE low approximately 15 sec after input of Display ON command.
1	1	XLE = Low

Note: When this function is used, minimize power supply and power cable impedance to avoid IC misoperation due to large current.

MAXIMUM ABSOLUTE RATINGS

Item		Symbol	Rating	Unit
Power voltage (1)		Vss	-0.6 to +0.3	V
Power voltage (2)		V5	-7.0 to +0.3	V
Power voltage (3)		$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$	V5 to +0.3	V
Input voltage		VIN	Vss-0.3 to +0.3	V
Output voltage		Vo	Vss -0.3 to +0.3	V
Operating temperature		Topr	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	TCP	Tstr	-55 to +100	${ }^{\circ} \mathrm{C}$
	Bare chip		-65 to +125	C

Notes: 1. All voltages are referenced to $\mathrm{VDD}=0 \mathrm{~V}$.
2. The following voltage levels must always be satisfied: $V_{D D} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4}$, and $V_{D D} \geq V_{S S} \geq V_{5}$
3. If the LSI is used beyond the maximum absolute rating, the LSI may be destroyed permanently. The LSI should meet the electric characteristics during normal operations. If not, the LSI may be malfunction or the LSI reliability may be lost.

DC CHARACTERISTICS

(VSS $=-3.6$ to $-1.7 \mathrm{~V}, \mathrm{Ta}=-30$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted.)

Item		Symbol	Conditions		Min.	Typ.	Max.	Unit	Pin
Power voltage (1)	Operable	Vss	1/4 bias		-3.6	-3.0	-1.7	V	Vss
			1/5 bias		-3.6	-3.0	-2.7		
	Data hold voltage				-3.6		-1.5		
Power voltage (2)	Operable	V5			-6.0		-3.0	V	V5
	Operable	$\mathrm{V}_{1}, \mathrm{~V}_{2}$			$0.5 \times \mathrm{V}_{5}$		Vdd	V	$\mathrm{V}_{1}, \mathrm{~V}_{2}$
	Operable	$\mathrm{V}_{3}, \mathrm{~V}_{4}$			V_{5}		$0.5 \times V_{5}$	V	$\mathrm{V}_{3}, \mathrm{~V}_{4}$
"Hi" input voltage		Vінс			$0.2 \times$ Vss		VdD	V	*2
"Lo" input voltage		VILC			Vss		$0.8 \times \mathrm{VDD}$	V	*2
Input leakage current		lL	$\mathrm{VIN}=\mathrm{VdD}$		-1.0		1.0	$\mu \mathrm{A}$	*2
LCD driver ON resistance		$\begin{gathered} \text { RoN } \\ \text { (LCD) } \end{gathered}$	$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}=0.1 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{5}=-5.0 \mathrm{~V}$		10	20	k Ω	$\underset{* 3}{\mathrm{COM}, \mathrm{SEG}}$
LED driver ON resistance		$\begin{gathered} \text { Ron } \\ \text { (LED) } \end{gathered}$	$\begin{aligned} & \mathrm{Vss}=-3.0 \mathrm{~V} \\ & \mathrm{loL}=10 \mathrm{~mA} \end{aligned}$			100		Ω	XLE1, XLE2
Static current consumption		IdDQ				0.1	5.0	$\mu \mathrm{A}$	Vdo
Dynamic current consumption	IDD	During display	$V_{5}=-$	$\begin{aligned} & \text { No loading } \\ & \text { Vss=-1.8V } \end{aligned}$		20	30	$\mu \mathrm{A}$	VdD *4
		During display	$V_{5}=$	No loading $\mathrm{Vss}=-3.0 \mathrm{~V}$		30	45	$\mu \mathrm{A}$	VdD *4
		During standby	OSC O No loa	WR off $\text { ; } \mathrm{Vss}=-3.0 \mathrm{~V}$		10	15	$\mu \mathrm{A}$	Vdd
		During sleep	OSC O No loa	PWR off $\mathrm{g} ; \mathrm{Vss}=-3.0 \mathrm{~V}$		0.1	5	$\mu \mathrm{A}$	VdD
		During access	fcyc=20	$\begin{aligned} & \mathrm{Kzz} \\ & \mathrm{Vss}=-3.0 \mathrm{~V} \end{aligned}$		150	300	$\mu \mathrm{A}$	VdD *5
Input pin capacity		Cln	$\mathrm{Ta}=25^{\circ} \mathrm{C}$,	MHz		8.0	10.0	pF	*3

Frame frequency	f_{FR}	$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VSS}=-3.0 \mathrm{~V}$	70	100	130	Hz	${ }^{*} 8$
External clock frequency	fCk			33.8		kHz	${ }^{*} 8,{ }^{*} 9$

Reset time	t_{R}		1.0			$\mu \mathrm{~s}$	${ }^{*} 6$
Reset pulse width	tRW		10			$\mu \mathrm{~s}$	${ }^{*} 6$
Reset start time	tres		50			ns	${ }^{*} 7$

Dynamic system:

	Amp output voltage	V5	$\mathrm{Ta}=25^{\circ} \mathrm{C}$ (during $1 / 4$ bias)	$\begin{gathered} 4 \times \\ \text { VREG2 } \end{gathered}$			V	
	Reference voltage	Vreg2	$\mathrm{Ta}=25^{\circ} \mathrm{C}$ (during $1 / 4$ bias)	-1.55	-1.5	-1.45	V	

*1 Although the wide operating character range is guaranteed, a quick and excessive voltage variation may not be guaranteed during access by the MPU. The low-voltage data hold characteristics are valid during Sleep mode. No access by the MPU is allowed during this time.
*2 D0 to D5, D6 (SCL), D7 (SI), A0, RES, XCS, XWR (E), PS, IF, C86
*3 The resistance if a 0.1 -volt voltage is supplied between the SEGn, SEGSn, COMn or COMSn output pin and each power pin (V1, V2, V3 or V 4$)$. It is defined within power voltage (2).
Ron $=0.1 \mathrm{~V} / \Delta \mathrm{I}$
where, $\Delta \mathrm{I}$ is current that flows when the 0.1 -volt voltage is supplied between the power supply and output.
*4 Applied if not accessed by the MPU during character display and if the built-in power circuit and oscillator are operating.
Display character:

*5 Current consumption if always written in "fcyc". The current consumption during access is roughly proportional to the access frequency (fcyc).
*6 The "tR" (reset time) indicates a time period from the rising edge of RES signal to the completion of internal circuit reset. Therefore, the SED1225 enters the normal operation status after "tR".
*7 Defines the minimum pulse width of RES signal. A pulse width greater than "tRW" must be entered for reset.

All signal timings are based on 20% and 80% of Vss.
*8 The following provides the relationship between the oscillator frequency (fOSC) for built-in circuit driving and the frame frequency (fFR).
foSC $=13 \times 26 \times \mathrm{fFR}$ (3-line display)
$=13 \times 18 \times \mathrm{fFR}$ (2-line display)
<Reference>
fBLK $=(1 / 128) \times \mathrm{fFR}$
*9 Enter the waveforms in 40% to 60% duty to use an external clock instead of the built-in oscillator. If no external clock is entered, fix it to high. (Normal high)

SIGNAL TIMING CHARACTERISTICS

(1) MPU bus write timing (80 series)

Item	Signal	Symbol	Conditions	Min.	Max.	Unit
Address setup time Address hold time XCS setup time	$\begin{gathered} \text { A0 } \\ \text { XCS } \end{gathered}$	$\begin{aligned} & \text { taw } \\ & \text { taH8 } \\ & \text { tacB } \\ & \hline \end{aligned}$	All timing must be based on 20% and 80% of Vss.	60 30 0	-	ns
System cycle time	XWR	tcycs		1850	-	ns
Write "Lo" pulse width (XWR)		tccı		150	-	ns
Write "Hi" pulse width (XWR)		tcch		1650	-	ns
Data setup time Data hold time	D0 to D7	$\begin{aligned} & \text { tos8 } \\ & \text { toH8 } \end{aligned}$		50 50	-	ns

Item	Signal	Symbol	Conditions	Min.	Max.	Unit
Address setup time Address hold time XCS setup time	$\begin{gathered} \text { A0 } \\ \text { XCS } \end{gathered}$	$\begin{aligned} & \hline \mathrm{t}_{\text {AW }} \\ & \mathrm{t}_{\mathrm{AH} 8} \\ & \mathrm{t}_{\mathrm{ACB}} \\ & \hline \end{aligned}$	All timing must be based on 20% and 80% of Vss.	60 30 0	二	ns
System cycle time	XWR	tcycs		1150	-	ns
Write "Lo" pulse width (XWR)		tccl		100	-	ns
Write "Hi" pulse width (XWR)		tcch		1000	-	ns
Data setup time Data hold time	D0 to D7	$\begin{aligned} & \text { tos8 } \\ & \text { toH8 } \end{aligned}$		20 20	-	ns

*1 The input signal rise and fall times (tr, tf) are defined to be 25 nsec max (except for RES input).

*2"tCCL" is defined by the overlap time of XCS low level and XWR low level.
(2) MPU bus write timing (68 series)

$\left(\mathrm{Ta}=-30\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V} s=-3.6 \mathrm{~V}$ to $\left.-1.7 \mathrm{~V}\right)$

Item	Signal	Symbol	Conditions	Min.	Max.	Unit
Address setup time Address hold time XCS setup time	$\begin{gathered} \text { A0 } \\ \text { XCS } \end{gathered}$	taw6 tah6 $^{\text {a }}$ tac6 $^{\text {a }}$	All timing must be based on 20% and 80% of Vss.	60 50 0	-	ns
System cycle time	XWR	tcyc6		1850	-	ns
Enable "Lo" pulse width (XWR)		tewl		1650	-	ns
Enable "Hi" pulse width (XWR)		tewh		150	-	ns
Data setup time Data hold time	D0 to D7	$\begin{aligned} & \text { tDS6 } \\ & \text { tDH6 } \end{aligned}$		20 80	-	ns

$\left(\mathrm{Ta}=-30\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{Vss}=-3.3 \mathrm{~V}$ to $\left.-2.7 \mathrm{~V}\right)$

Item	Signal	Symbol	Conditions	Min.	Max.	Unit
Address setup time Address hold time XCS setup time	$\begin{gathered} \text { A0 } \\ \text { XCS } \end{gathered}$	taw6 $t_{\text {AH6 }}$ tAC6	All timing must be based on 20% and 80% of Vss.	60 30 0	-	ns
System cycle time	XWR	tcyc6		1150	-	ns
Enable "Lo" pulse width (XWR)		tewl		1000	-	ns
Enable "Hi" pulse width (XWR)		tewh		100	-	ns
Data setup time Data hold time	D0 to D7	$\begin{aligned} & \text { tDS6 } \\ & \text { tDH6 } \end{aligned}$		20 50	-	ns

*1 The input signal rise and fall times (tr, tf) are defined to be 25 nsec max (except for RES input).

*2 "tewh" is defined by the overlap time of XCS low level and XWR low level.
(3) Serial interface

($\mathrm{Ta}=-30$ to $+85^{\circ} \mathrm{C}$, Vss $=-3.6 \mathrm{~V}$ to -1.7 V)

Item	Signal	Symbol	Conditions	Min.	Max.	Unit
System clock cycle SCL "Hi" pulse width SCL "Lo" pulse width	SCL	tscyc tshw tsLw	All timing must be based on 20% and 80% of Vss.	$\begin{array}{r} 3000 \\ 2850 \\ 150 \end{array}$	-	ns
Address setup time Address hold time	A0	$\begin{aligned} & \text { tsAS } \\ & \text { tsAH } \\ & \hline \end{aligned}$		50 800	-	ns
Data setup time Data hold time	SI	$\begin{aligned} & \hline \text { tsDs } \\ & \text { tsDH } \end{aligned}$		50 50	-	ns
CS-to-SCL time	XCS	$\begin{aligned} & \text { tcss } \\ & \text { tcsh } \end{aligned}$		$\begin{array}{r} 400 \\ 2500 \end{array}$	-	ns

($\mathrm{Ta}=-30$ to $+85^{\circ} \mathrm{C}, \mathrm{V}$ ss $=-3.3 \mathrm{~V}$ to -2.7 V)

Item	Signal	Symbol	Conditions	Min.	Max.	Unit
System clock cycle SCL "Hi" pulse width SCL "Lo" pulse width	SCL	tscyc tshw tsLw	All timing must be based on 20% and 80% of Vss.	$\begin{array}{r} 1400 \\ 1300 \\ 50 \end{array}$	-	ns
Address setup time Address hold time	A0	$\begin{aligned} & \hline \text { tsAs } \\ & \text { tsDH } \end{aligned}$		50 500	-	ns
Data setup time Data hold time	SI	$\begin{aligned} & \text { tsos } \\ & \text { tson } \end{aligned}$		30 30	-	ns
CS-to-SCL time	XCS	tcss		$\begin{array}{r} 200 \\ 1500 \end{array}$	-	ns

*1 The input signal rise and fall times (tr, tf) are defined to be 25 nsec max (except for RES input).

MPU INTERFACES (REFERENCE)

The SED1225 can be connected to the 80 -series or 68series MPU. Also, it can operate with a less number of signal lines via the serial interface.
If the MPU buses and ports are set to high impedance for
a certain time due to RESET, the RESET signal must be entered in the SED1225 after the SED1225's inputs have been determined.

80-Series MPU

68-Series MPU

Serial Interface

LCD CELL INTERFACE

12 columns by 3 lines, 5×8 dots + Symbols

12 columns by 2 lines ($N=1$), 5×8 dots + Symbols

LCD DRIVE WAVEFORMS (B WAVEFORMS)

EXAMPLE OF INSTRUCTION SETUP (REFERENCE)

Initialization

SED1225 Series

Display Mode

End of initialization	
RAM address set input RAM (data) write input Display the written contents.	

Standby Mode

(1) Setting the standby mode

(2) Clearing the standby mode

Sleep Mode

(1) Setting the Sleep mode.

(2) Clearing the sleep mode

(See Note 2)

Note 1. <6> and <7> of 15-1 indicate RAM initialization. Set the contents to be displayed in the beginning. For items not to be displayed (RAM Clear), use the following steps:

- DD RAM - write 20H (character code).
- CG RAM - write 00H (data '0').
- Symbol register - write 00H (data '0').

The RAM data is unspecified at the time of reset input (after power is turned on). If the data ' 0 ' is not written at this stage, unexpected display may occur to the unset position.

Note 2. Defined by the rising characteristics of the power circuit, time setting varies according to the external capacity. So be sure to make confirmation by external capacity, and set this time.

Note 3. The dynamic drive system display lamp is lit up by the display on/off command when it is on. The static icon lamp is lit by the static icon control command. So to light up the lamp simultaneously with start of display, execute the display on/off control command and static icon control within one frame.

OPTION LIST

The SED 1225 has the following options. Options are available exclusively for users. Please contact our Sales Department for information.

- The following shows how to define the name of the product compatible with options:

Example: SED1225D $\underset{\uparrow}{*}$
Option compatibility column

Specification of character generator ROM (CGROM)

The SED1225 incorporates a characters generator ROM consisting of up to 256 types of characters, with each character size featuring 5×7 (8) dots. The SED1225 CGROM is designed as a masked ROM, and is compatible with the CGROM for exclusive use of the user. For the standard CGROM, see the Character Font Table.

Specifications of external clock

The SED1225 has an external clock terminal which is provided with two types of functions; fosc and $4 \times$ fosc. Either fosc or $4 \times$ fosc can be selected according to the user's requirements.

	Built-in oscillation fosc	External clock fosc	External clock $4 \times$ fosc
Standard	\bigcirc	\bigcirc	\times
Optional	\bigcirc	\times	\bigcirc

The standard external clock specifications are set on the fosc.

CAUTIONS

The following points should be noted when this Development Specification is used:

1. This Development Specification is subject to modification for improvement without prior notice.
2. This Development Specification is not intended to guarantee enforcement of industrial property and other rights, or to grant license for the use of this product. Examples of applications mentioned in this Development Specification are given for effective understanding of the product. We are not responsible for any circuit problems which might occur due to use of these examples. The size of the values appearing in the characteristics table is represented by the size of the number line.
3. Part or whole of this Development Specification shall not be quoted, reproduced or used for other purposes without permission of our company.

For the use of the semi-conductor, take note of the following:
"Handling cautions for light"
According to the principle of the solar battery the semiconductor characteristics are changed when exposed to light.
So misoperation may occur if this IC is exposed to light.
For the single IC unit, measures against light are not yet completely taken. The board and the product where this IC is mounted must be provided with the following measures:
(1) For designing and mounting, measures must be taken to provide the structure which ensures the light protecting properties of the IC during actual use.
(2) In the inspection process, environmental design must be made with consideration given to the light protecting properties of the IC.
(3) To ensure light protecting properties of the IC, consideration must be given to the surface, back and sides of the IC chip.

SED1230 Series LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW 6-1
FEATURES 6-1
BLOCK DIAGRAM 6-2
SED1230 SERIES, CHIP SPECIFICATION 6-3
DESCRIPTION OF PINS 6-12
FUNCTIONAL DESCRIPTION 6-15
COMMANDS 6-21
CHARACTER GENERATOR 6-25
ABSOLUTE MAXIMUM RATINGS 6-32
DC CHARACTERISTICS 6-33
TIMING CHARACTERISTICS 6-35
MPU INTERFACE (REFERENCE EXAMPLES) 6-38
INTERFACE TO LCD CELLS (REFERENCE) 6-39
LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS) 6-40
INSTRUCTION SETUP EXAMPLE (Reference Only) 6-41

OVERVIEW

The SED1230 Series is a dot matrix LCD controller driver for character display, and can display a maximum of 48 characters, 4 user-defined characters, and a maximum of 64 symbols by means of 4-bit, 8-bit or serial data sent from a microcomputer.
A built-in character generator ROM is prepared for 256 character types, and each character font consists of 5×7 dots. A user-defined character RAM for four characters of 5×7 dots are incorporated, and a symbol register is also incorporated. With these, it is possible to apply this Series to display with a high degree of freedom. This Series can operate handy units with a minimum power consumption by means of its low power consumption and standby mode.
The SED1230 Series are classified into SED1230, SED1231, SED1232, and SED1233 depending on the duty of use and the number of display columns.

FEATURES

- Built-in display RAM

48 characters +4 user-defined characters +64 symbols

- CG ROM (for up to 256 characters), CG RAM (4 characters), and symbol register (64 symbols)
- Number of display columns \times number of lines
$(12$ columns +1 column for signal $) \times 4$ lines +52 symbols: SED1230
$(12$ columns +1 column for signal) $\times 3$ lines +52 symbols: SED1231
$(12$ columns +1 column for signal $) \times 2$ lines +52 symbols: SED1232
16 columns $\times 2$ lines +64 symbols: SED1233
- CR oscillation circuit (on-chip C and R)
- High-speed MPU interface

Interfacing with both 68 series and 80
series MPU
Interfacing in 4 bits $/ 8$ bits

- Serial interface
- Character font 5×7 dots
- Duty ratio $\quad 1 / 16$ (SED1232, SED1233)

1/23 (SED1231)
1/30 (SED1230)

- Simple command setting
- Built-in liquid crystal driving power circuit

Power boosting circuit, power regulating circuit, voltage follower $\times 4$

- Built-in electronic volume function
- Low power consumption
$100 \mu \mathrm{~A}$ Max. (In normal operation mode: Including the operating current of the built-in power supply)
$20 \mu \mathrm{~A}$ Max. (In standby display mode)
- Power supply

VdD - Vss (logic section) : -2.4 V to -3.6 V
VDD - V5 (liquid crystal drive section)

$$
:-5.0 \mathrm{~V} \text { to }-11.0 \mathrm{~V}
$$

- Wide operating temperature range
$\mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$
- CMOS process
- Delivery form: Chip SED123*D*B, SED123*D*E (Gold bump product) SED123*D*A, SED123*D*C (A1 pad product)
TCP SED123*T**
- This IC is not designed with a protection against radioactive rays.

BLOCK DIAGRAM

SED1230 SERIES, CHIP SPECIFICATION

SED1230D ${ }_{* *}$	1/30 duty	12 columns +1 signal column
SED1231D ${ }^{* *}$	1/23 duty	12 columns +1 signal column
SED1232D**	1/16 duty	12 columns +1 signal column
SED1233D ${ }_{\text {类* }}$	1/16 duty	16 columns
\#1 Column for CG ROM pattern change		

Chip size: $\quad 10.23 \times 3.11 \mathrm{~mm}$
Pad pitch: $\quad 110 \mu \mathrm{~m}$ (Min.)
Chip thickness: 625 (SED123*D*A, SED123*D*B)
525 (SED123*D*C, SED123*D*E)

1) A 1 pad specification (SED $123 * \mathrm{D} * \mathrm{~A}$)

Pad size: A $86 \mu \mathrm{~m} \times 135 \mu \mathrm{~m}$ B $135 \mu \mathrm{~m} \times 86 \mu \mathrm{~m}$
2) Au bump specification (SED $123 * \mathrm{D} * \mathrm{~B}$)

For reference:
Bump size A $80 \mu \mathrm{~m} \times 129 \mu \mathrm{~m}$ B $129 \mu \mathrm{~m} \times 80 \mu \mathrm{~m}$
Bump height $22.5 \mu \mathrm{~m}$

Unit: $\mu \mathrm{m}$

PAD		COORDINATES	
No.	Name	X	Y
1	(NC)	-4793	-1371
2		-4683	
3		-4572	
4	1	-4462	
5	VDD	-4242	
6		-4132	
7		-4021	
8	\checkmark	-3911	
9	Vss	-3691	
10		-3581	
11		-3470	
12	\checkmark	-3360	
13	V5	-3140	
14		-3030	
15		-2919	
16	\checkmark	-2809	
17	V4	-2589	
18		-2479	
19		-2368	
20	\checkmark	-2258	
21	V3	-2021	
22		-1910	
23		-1800	
24	\checkmark	-1690	
25	V2	-1453	
26		-1342	
27		-1232	
28	,	-1122	
29	V1	-884	
30		-774	
31		-664	
32	,	-554	
33	Vo	-316	
34		-206	
35		-96	
36	V	14	
37	VR	235	
38		345	
39		455	
40	-	565	
41	Vout	803	
42		913	
43		1023	
44	AP	1133	
45 46	CAP2-	1354	
46		1464	
47		1574	
48	$\stackrel{\square}{1}$	1684	
49	CAP2+	1905	
50		2015	
51		2125	
52	\checkmark	2235	
53	CAP1-	2473	\downarrow
54	\downarrow	2583	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
55	CAP1-	2693	-1371
56	,	2803	
57	CAP1+	3024	
58		3134	
59		3244	
60	\checkmark	3354	
61	Vss	3592	
62		3702	
63		3812	
64	\checkmark	3923	
65	Vdd	4143	
66		4253	
67		4363	
68	\downarrow	4474	\checkmark
69	(NC)	4883	-1343
70	(NC)		-1233
71	(NC)		-1123
72	(NC)	,	-1013
73	Vs1	4929	-902
74	P/S		-186
75	IF		-76
76	RES		34
77	COMS1		255
78	COMS2		365
79	COM 1		475
80	COM 2		585
81	COM 3		696
82	COM 4		806
83	COM 5		916
84	COM 6		1026
85	COM 7	\downarrow	1136
86	(NC)	4947	1382
87		4836	
88		4726	
89	\checkmark	4616	
90	COM 8	4347	
91	COM 9	4237	
92	COM10	4127	
93	COM11	4017	
94	COM12	3906	
95	COM13	3796	
96	COM14	3686	
97	SEGS2	3576	
98	SEGS3	3466	
99	SEGS4	3355	
100	SEG 1	3245	
101	SEG 2	3135	
102	SEG 3	3025	
103	SEG 4	2915	
104	SEG 5	2804	
105	SEG 6	2694	
106	SEG 7	2584	
107	SEG 8	2474	
108	SEG 9	2364	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
109	SEG10	2253	-1382
110	SEG11	2143	
111	SEG12	2033	
112	SEG13	1923	
113	SEG14	1813	
114	SEG15	1702	
115	SEG16	1592	
116	SEG17	1482	
117	SEG18	1372	
118	SEG19	1262	
119	SEG20	1151	
120	SEG21	1041	
121	SEG22	931	
122	SEG23	821	
123	SEG24	711	
124	SEG25	600	
125	SEG26	490	
126	SEG27	380	
127	SEG28	270	
128	SEG29	160	
129	SEG30	49	
130	SEG31	-61	
131	SEG32	-171	
132	SEG33	-281	
133	SEG34	-391	
134	SEG35	-502	
135	SEG36	-612	
136	SEG37	-722	
137	SEG38	-832	
138	SEG39	-942	
139	SEG40	-1053	
140	SEG41	-1163	
141	SEG42	-1273	
142	SEG43	-1383	
143	SEG44	-1493	
144	SEG45	-1604	
145	SEG46	-1714	
146	SEG47	-1824	
147	SEG48	-1934	
148	SEG49	-2044	
149	SEG50	-2155	
150	SEG51	-2265	
151	SEG52	-2375	
152	SEG53	-2485	
153	SEG54	-2595	
154	SEG55	-2706	
155	SEG56	-2816	
156	SEG57	-2926	
157	SEG58	-3036	
158	SEG59	-3146	
159	SEG60	-3257	
160	SEGS4	-3367	
161	SEGS5	-3477	
162	SEGS6	-3587	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
163	COM28	-3697	1382
164	COM27	-3808	
165	COM26	-3918	
166	COM25	-4028	
167	COM24	-4138	
168	COM23	-4248	
169	COM22	-4359	
170	(NC)	-4627	
171		-4738	
172		-4848	
173		-4958	
174	COM21	-4940	1136
175	COM20		1026
176	COM19		916
177	COM18		806
178	COM17		696
179	COM16		585
180	COM15		475
181	COMS3		365
182	SEGS1		255
183	A0		34
184	WR		-76
185	CS		-186
186	D7		-296
187	D6		-406
188	D5		-517
189	D4		
190	D3		-627
191	D2		-737
192	D1		-847
193	D0		-957
			-1068

<SED1231D**>
Unit: $\mu \mathrm{m}$

PAD		COORDINATES	
No.	Name	X	Y
1	(NC)	-4793	-1371
		-4683	
3		-4572	
4	\checkmark	-4462	
5	VdD	-4242	
6		-4132	
7		-4021	
8	*	-3911	
9	Vss	-3691	
10		-3581	
11		-3470	
12	\checkmark	-3360	
13	V5	-3140	
14		-3030	
15		-2919	
16	,	-2809	
17	V4	-2589	
18		-2479	
19		-2368	
20	V	-2258	
21	V3	-2021	
22		-1910	
23		-1800	
24	V	-1690	
25	V2	-1453	
26		-1342	
27		-1232	
28	\checkmark	-1122	
29	V1	-884	
30		-774	
31		-664	
32	\checkmark	-554	
33	Vo	-316	
34		-206	
35		-96	
36	$\stackrel{r}{1}$	14	
37	VR	235	
38		345	
39		455	
40	'	565	
41	Vout	803	
42		913	
43		1023	
44	$\stackrel{\square}{*}$	1133	
45	CAP2-	1354	
46 47		1464 1574	
48	,	1684	
49	CAP2+	1905	
50		2015	
51		2125	
52	$\stackrel{ }{\prime}$	2235	
53	CAP1-	2473	
54	\downarrow	2583	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
55	CAP1-	2693	-1371
56	,	2803	
57	CAP1+	3024	
58		3134	
59		3244	
60	\checkmark	3354	
61	Vss	3592	
62		3702	
63		3812	
64	\downarrow	3923	
65	Vdd	4143	
66		4253	
67		4363	
68	,	4474	1
69	(NC)	4883	-1343
70	(NC)		-1233
71	(NC)		-1123
72	(NC)	\checkmark	-1013
73	Vs1	4929	-902
74	P/S		-186
75	IF		-76
76	RES		34
77	COMS1		255
78	COMS2		365
79	COM 1		475
80	COM 2		585
81	COM 3		696
82	COM 4		806
83	COM 5		916
84	COM 6		1026
85	COM 7	\downarrow	1136
86	(NC)	4947	1382
87		4836	
88		4726	
89	\checkmark	4616	
90	COM 8	4347	
91	COM 9	4237	
92	COM10	4127	
93	COM11	4017	
94	COM12	3906	
95	COM13	3796	
96	COM14	3686	
97	SEGS2	3576	
98	SEGS3	3466	
99	SEGS4	3355	
100	SEG 1	3245	
101	SEG 2	3135	
102	SEG 3	3025	
103	SEG 4	2915	
104	SEG 5	2804	
105	SEG 6	2694	
106	SEG 7	2584	
107	SEG 8	2474	
108	SEG 9	2364	'

PAD		COORDINATES	
No.	Name	X	Y
109	SEG10	2253	1382
110	SEG11	2143	
111	SEG12	2033	
112	SEG13	1923	
113	SEG14	1813	
114	SEG15	1702	
115	SEG16	1592	
116	SEG17	1482	
117	SEG18	1372	
118	SEG19	1262	
119	SEG20	1151	
120	SEG21	1041	
121	SEG22	931	
122	SEG23	821	
123	SEG24	711	
124	SEG25	600	
125	SEG26	490	
126	SEG27	380	
127	SEG28	270	
128	SEG29	160	
129	SEG30	49	
130	SEG31	-61	
131	SEG32	-171	
132	SEG33	-281	
133	SEG34	-391	
134	SEG35	-502	
135	SEG36	-612	
136	SEG37	-722	
137	SEG38	-832	
138	SEG39	-942	
139	SEG40	-1053	
140	SEG41	-1163	
141	SEG42	-1273	
142	SEG43	-1383	
143	SEG44	-1493	
144	SEG45	-1604	
145	SEG46	-1714	
146	SEG47	-1824	
147	SEG48	-1934	
148	SEG49	-2044	
149	SEG50	-2155	
150	SEG51	-2265	
151	SEG52	-2375	
152	SEG53	-2485	
153	SEG54	-2595	
154	SEG55	-2706	
155	SEG56	-2816	
156	SEG57	-2926	
157	SEG58	-3036	
158	SEG59	-3146	
159	SEG60	-3257	
160	SEGS4	-3367	
161	SEGS5	-3477	
162	SEGS6	-3587	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
163	(NC)	-3697	1382
164		-3808	
165		-3918	
166		-4028	
167		-4138	
168		-4248	
169		-4359	
170		-4627	
171		-4738	
172		-4848	
173		-4958	
174	COM21	-4940	1136
175	COM20		1026
176	COM19		916
177	COM18		806
178	COM17		696
179	COM16		585
180	COM15		475
181	COMS3		365
182	SEGS1		255
183	A0		
184	WR		34
185	CS		-76
186	D7		-186
187	D6		-296
188	D5		-406
189	D4		-517
190	D3		-627
191	D2		-737
192	D1		
193	D0		

<SED1232D ${ }_{\text {*** }}$
Unit: $\mu \mathrm{m}$

PAD		COORDINATES	
No.	Name	X	Y
1	(NC)	-4793	-1371
2		-4683	
3		-4572	
4	\checkmark	-4462	
5	Vdd	-4242	
6		-4132	
7		-4021	
8	,	-3911	
9	Vss	-3691	
10		-3581	
11		-3470	
12	\checkmark	-3360	
13	V5	-3140	
14		-3030	
15		-2919	
16	\checkmark	-2809	
17	V4	-2589	
18		-2479	
19		-2368	
20	,	-2258	
21	V3	-2021	
22		-1910	
23		-1800	
24	V	-1690	
25	V2	-1453	
26		-1342	
27		-1232	
28	V	-1122	
29	V1	-884	
30		-774	
31		-664	
32	\checkmark	-554	
33	Vo	-316	
34		-206	
35		-96	
36	r	14	
37	VR	235	
38		345	
39		455	
40	,	565	
41	Vout	803	
42		913	
43		1023	
44	-	1133	
45	CAP2-	1354	
46		1464	
47		1574	
48	CAP2+	1684	
49 50	CAP2+	1905	
51		2125	
52	V	2235	
53	CAP1-	2473	,
54	\downarrow	2583	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
55	CAP1-	2693	-1371
56	,	2803	
57	CAP1+	3024	
58		3134	
59		3244	
60	\checkmark	3354	
61	Vss	3592	
62		3702	
63		3812	
64	\checkmark	3923	
65	Vdd	4143	
66		4253	
67		4363	
68	\downarrow	4474	\checkmark
69	(NC)	4883	-1343
70	(NC)		-1233
71	(NC)		-1123
72	(NC)	,	-1013
73	Vs1	4929	-902
74	P/S		-186
75	IF		-76
76	RES		34
77	COMS1		255
78	COMS2		365
79	COM 1		475
80	COM 2		585
81	COM 3		696
82	COM 4		806
83	COM 5		916
84	COM 6		1026
85	COM 7	\downarrow	1136
86	(NC)	4947	1382
87		4836	
88		4726	
89	\checkmark	4616	
90	COM 8	4347	
91	COM 9	4237	
92	COM10	4127	
93	COM11	4017	
94	COM12	3906	
95	COM13	3796	
96	COM14	3686	
97	SEGS2	3576	
98	SEGS3	3466	
99	SEGS4	3355	
100	SEG 1	3245	
101	SEG 2	3135	
102	SEG 3	3025	
103	SEG 4	2915	
104	SEG 5	2804	
105	SEG 6	2694	
106	SEG 7	2584	
107	SEG 8	2474	
108	SEG 9	2364	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
109	SEG10	2253	1382
110	SEG11	2143	
111	SEG12	2033	
112	SEG13	1923	
113	SEG14	1813	
114	SEG15	1702	
115	SEG16	1592	
116	SEG17	1482	
117	SEG18	1372	
118	SEG19	1262	
119	SEG20	1151	
120	SEG21	1041	
121	SEG22	931	
122	SEG23	821	
123	SEG24	711	
124	SEG25	600	
125	SEG26	490	
126	SEG27	380	
127	SEG28	270	
128	SEG29	160	
129	SEG30	49	
130	SEG31	-61	
131	SEG32	-171	
132	SEG33	-281	
133	SEG34	-391	
134	SEG35	-502	
135	SEG36	-612	
136	SEG37	-722	
137	SEG38	-832	
138	SEG39	-942	
139	SEG40	-1053	
140	SEG41	-1163	
141	SEG42	-1273	
142	SEG43	-1383	
143	SEG44	-1493	
144	SEG45	-1604	
145	SEG46	-1714	
146	SEG47	-1824	
147	SEG48	-1934	
148	SEG49	-2044	
149	SEG50	-2155	
150	SEG51	-2265	
151	SEG52	-2375	
152	SEG53	-2485	
153	SEG54	-2595	
154	SEG55	-2706	
155	SEG56	-2816	
156	SEG57	-2926	
157	SEG58	-3036	
158	SEG59	-3146	
159	SEG60	-3257	
160	SEGS4	-3367	
161	SEGS5	-3477	
162	SEGS6	-3587	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
163	(NC)	-3697	1382
164		-3808	
165		-3918	
166		-4028	
167		-4138	
168		-4248	
169		-4359	
170		-4627	
171		-4738	
172		-4848	
173		-4958	
174	COM14	-4940	1136
175	COM13		1026
176	COM12		916
177	COM11		806
178	COM10		696
179	COM 9		585
180	COM		
181	COMS3		475
182	SEGS1		365
183	A0		255
184	WR		34
185	CS		-76
186	D7		-186
187	D6		-296
188	D5		-406
189	D4		-517
190	D3		-627
191	D2		-737
192	D1		
193	D0		

Unit: $\mu \mathrm{m}$

PAD		COORDINATES	
No.	Name	X	Y
1	(NC)	-4793	-1371
2		-4683	
3		-4572	
4	1	-4462	
5	VDD	-4242	
6		-4132	
7		-4021	
8	\checkmark	-3911	
9	Vss	-3691	
10		-3581	
11		-3470	
12	\checkmark	-3360	
13	V5	-3140	
14		-3030	
15		-2919	
16	\checkmark	-2809	
17	V4	-2589	
18		-2479	
19		-2368	
20	\checkmark	-2258	
21	V3	-2021	
22		-1910	
23		-1800	
24	\checkmark	-1690	
25	V2	-1453	
26		-1342	
27		-1232	
28	,	-1122	
29	V1	-884	
30		-774	
31		-664	
32	,	-554	
33	Vo	-316	
34		-206	
35		-96	
36	V	14	
37	VR	235	
38		345	
39		455	
40	-	565	
41	Vout	803	
42		913	
43		1023	
44	AP	1133	
45 46	CAP2-	1354	
46		1464	
47		1574	
48	$\stackrel{\square}{1}$	1684	
49	CAP2+	1905	
50		2015	
51		2125	
52	\checkmark	2235	
53	CAP1-	2473	\downarrow
54	\downarrow	2583	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
55	CAP1-	2693	-1371
56	,	2803	
57	CAP1+	3024	
58		3134	
59		3244	
60	\checkmark	3354	
61	Vss	3592	
62		3702	
63		3812	
64	\checkmark	3923	
65	Vdd	4143	
66		4253	
67		4363	
68	\downarrow	4474	\checkmark
69	(NC)	4883	-1343
70	(NC)		-1233
71	(NC)		-1123
72	(NC)	,	-1013
73	Vs1	4929	-902
74	P/S		-186
75	IF		-76
76	RES		34
77	COMS1		255
78	COMS2		365
79	COM 1		475
80	COM 2		585
81	COM 3		696
82	COM 4		806
83	COM 5		916
84	COM 6		1026
85	COM 7	\downarrow	1136
86	(NC)	4947	1382
87		4836	
88		4726	
89	\checkmark	4616	
90	SEG 1	4347	
91	SEG 2	4237	
92	SEG 3	4127	
93	SEG 4	4017	
94	SEG 5	3906	
95	SEG 6	3796	
96	SEG 7	3686	
97	SEG 8	3576	
98	SEG 9	3466	
99	SEG10	3355	
100	SEG11	3245	
101	SEG12	3135	
102	SEG13	3025	
103	SEG14	2915	
104	SEG15	2804	
105	SEG16	2694	
106	SEG17	2584	
107	SEG18	2474	
108	SEG19	2364	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
109	SEG20	2253	1382
110	SEG21	2143	
111	SEG22	2033	
112	SEG23	1923	
113	SEG24	1813	
114	SEG25	1702	
115	SEG26	1592	
116	SEG27	1482	
117	SEG28	1372	
118	SEG29	1262	
119	SEG30	1151	
120	SEG31	1041	
121	SEG32	931	
122	SEG33	821	
123	SEG34	711	
124	SEG35	600	
125	SEG36	490	
126	SEG37	380	
127	SEG38	270	
128	SEG39	160	
129	SEG40	49	
130	SEG41	-61	
131	SEG42	-171	
132	SEG43	-281	
133	SEG44	-391	
134	SEG45	-502	
135	SEG46	-612	
136	SEG47	-722	
137	SEG48	-832	
138	SEG49	-942	
139	SEG50	-1053	
140	SEG51	-1163	
141	SEG52	-1273	
142	SEG53	-1383	
143	SEG54	-1493	
144	SEG55	-1604	
145	SEG56	-1714	
146	SEG57	-1824	
147	SEG58	-1934	
148	SEG59	-2044	
149	SEG60	-2155	
150	SEG61	-2265	
151	SEG62	-2375	
152	SEG63	-2485	
153	SEG64	-2595	
154	SEG65	-2706	
155	SEG66	-2816	
156	SEG67	-2926	
157	SEG68	-3036	
158	SEG69	-3146	
159	SEG70	-3257	
160	SEG71	-3367	
161	SEG72	-3477	
162	SEG73	-3587	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
163	SEG74	-3697	1382
164	SEG75	-3808	
165	SEG76	-3918	
166	SEG77	-4028	
167	SEG78	-4138	
168	SEG79	-4248	
169	SEG80	-4359	
170	(NC)	-4627	
171		-4738	
172		-4848	
173		-4958	
174	COM14	-4940	1136
175	COM13		1026
176	COM12		916
177	COM11		806
178	COM10		696
179	COM 9		585
180	COM		475
181	COMS3		365
182	SEGS1		255
183	A0		34
184	WR		-76
185	CS		-186
186	D7		-296
187	D6		-406
188	D5		-517
189	D4		
190	D3		-627
191	D2		-737
192	D1		-847
193	D0		-957
			-1068

DESCRIPTION OF PINS

Power Pins

Pin name	1/0	Description	Q'ty
VDD	Power supply	Logic + power pin. Also used as MPU power pin Vcc.	2
Vss	Power supply	Logic - power pin. Connected to the system GND.	2
$\begin{aligned} & \hline \mathrm{V}_{0}, \mathrm{~V}_{1} \\ & \mathrm{~V}_{2}, \mathrm{~V}_{3} \\ & \mathrm{~V}_{4}, \mathrm{~V}_{5} \end{aligned}$	Power supply	Multi-level power supply for liquid crystal drive. The voltage determined in the liquid crystal cell is resistancedivided or impedance-converted by operational amplifier, and the resultant voltage is applied. The potential is determined on the basis of VDD and the following equation must be respected. $\begin{aligned} & V_{\text {DD }}=V_{0} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5} \\ & \text { VDD } \geq V_{\text {SS }} \geq V_{5} \geq \text { VouT } \end{aligned}$ When the built-in power supply is ON , the following voltages are given to pins V_{1} to V_{4} by built-in power circuit: $\begin{aligned} & V_{1}=1 / 5 V_{5} \\ & V_{2}=2 / 5 V_{5} \\ & V_{3}=3 / 5 V_{5} \\ & V_{4}=4 / 5 V_{5} \end{aligned}$	6
Vs1	0	Power supply voltage output pin for oscillating circuit. Don't connect this pin to an external load.	1

LCD Power Circuit Pins

Pin name	I/O	Description	Q'ty
CAP1+	O	Capacitor positive side connecting pin for boosting. This pin connects the capacitor with pin CAP1-.	1
CAP1-	O	Capacitor negative side connecting pin for boosting. This pin connects a capacitor with pin CAP+.	1
CAP2+	O	Capacitor positive side connecting pin for boosting. This pin connects a capacitor with pin CAP2-.	1
CAP2-	O	Capacitor negative side connecting pin for boosting. This pin connects a capacitor with pin CAP2+.	1
VouT	O	Output pin for boosting. This pin connects a smoothing capacitor with Vss pin.	1
VR	I	Voltage regulating pin. This pin gives a voltage between VDD and V5 by resistance-division of voltage.	1

Pins for System Bus Connection

Pin name	1/0	Description							Q'ty
$\begin{gathered} \text { D7 (SI) } \\ \text { D6 (SCL) } \\ \text { D5 ~ D0 } \end{gathered}$	I	8 -bit input data bus. These pins are connected to a 8 -bit or 16 -bit standard MPU data bus. When P/S = "Low", the D7 and D6 pins are operated as a serial data input and a serial clock input respectively.							8
A0	1	Usually, this pin connects the least significant bit of the MPU address bus and identifies a data command. 0 : Indicates that D0 to D7 are a command. 1 : Indicates that D0 to D7 are display data.							1
RES	1	In case of a 68 series MPU, initialization can be performed by changing RES \sqcap. In case of an 80 series MPU, initialization can be performed by changing \bigsqcup. A reset operation is performed by edge sensing of the RES signal. An interface type for the $68 / 80$ series MPU is selected by input level after initialization. "L" : 68 series MPU interface "H" : 80 series MPU interface							1
$\overline{\mathrm{CS}}$	1	Chip select signal. Usually, this pin inputs the signal obtained by decoding an address bus signal. At the "Low" level, this pin is enabled.							1
WR (E)	1	<When connecting an 80 series MPU> Active "Low". This pin connects the $\overline{W R}$ signal of the 80 series MPU. The signal on the data bus is fetched at the rise of the WR signal. <When connecting a 68 series MPU> Active "High". This pin becomes an enable clock input of the 68 series MPU.							1
P/S	1	This pin switches between serial data input and parallel data input.							1
		P/S	Chip	Select	Data/Comm		Data	Serial Clock	
		"High"			A0		D0~D7	-	
		"Low"			A0		SI	SCL	
IF	1	Interface data length select pin for parallel data input. "High": 8-bit parallel input "Low": 4-bit parallel input When P/S = "Low", connect this pin to VdD or Vss.							1

Liquid Crystal Drive Circuit Signals

SED1230, SED1231, SED1232

Pin name	I/O	Description	Q'ty
COM1~ COM28	O	Common signal output pin (for characters)	28
COMS1~ CMOS3	O	Common signal output pin (except for characters) CMOS1: Common output for static drive. In the standby mode only, a Vss amplitude is output. CMOS2, CMOS3: Common output for symbol display	3
SEG1~ SEG60	O	Segment signal output pin (for characters)	60
SEGS1~ SEGS6	O	Segment signal output pin (except for characters) SEGS1: Segment output for static drive. In the standby mode only, a Vss amplitude is output. SEGS2, SEGS6: Segment output for signal output	7

SED1233

Pin name	I/O	Description	Q'ty
COM1~ COM14	O	Common signal output pin (for characters)	14
COMS1~ CMOS3	O	Common signal output pin (except for characters) CMOS1: Common output for static drive. In the standby mode only, a Vss amplitude is output. CMOS2, CMOS3: Common output for symbol display	3
SEG1~ SEG80	O	Segment signal output pin (for characters)	80
SEGS1	O	Segment signal output pin (except for characters) SEGS1: Segment output for static drive. In the standby mode only, a Vss amplitude is output.	1

FUNCTIONAL DESCRIPTION

MPU Interface

Selection of interface type

In the SED1230 Series, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting "High" or "Low" as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table 1.

Table 1

P/S	Type	$\overline{\mathrm{CS}}$	A 0	$\overline{\mathrm{WR}}$	SI	SCL	$\mathrm{D} 0 \sim \mathrm{D7}$
"High"	Parallel Input	$\overline{\mathrm{CS}}$	A 0	$\overline{\mathrm{WR}}$	-	-	$\mathrm{D} 0 \sim \mathrm{D7}$
"Low"	Serial Input	$\overline{\mathrm{CS}}$	A 0	-	SI	SCL	-

Parallel Input
In the SED1230 Series, when parallel input is selected (P/S = "High"), it can be directly connected to the 80 series MPU bus or 68 series MPU bus, as shown in Table 2, if either "High" or "Low" is selected as RES pin polarity after a reset input, because the RES pin has an MPU select function.
Selection between 8 bits and 4 bits is performed by command.
Table 2

RES input polarity	Type	A0	$\overline{\text { WR }}$	$\overline{\mathrm{CS}}$	D0~D7
\square active	68 series	A0	E	$\overline{\mathrm{CS}}$	$\mathrm{D} 0 \sim \mathrm{D7}$
$\square_{\text {active }}$	80 series	A0	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$	$\mathrm{D} \sim \sim \mathrm{D7} 7$

Interface with 4-bit MPU interface

When data transfer is performed by 4-bit interface ($\mathrm{IF}=0$), an 8-bit command, data and address are divided into two parts. $\overline{C S}$

$\overline{W R}$

D7 to D4

Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then perform writing.

Serial interface ($\mathrm{P} / \mathrm{S}=$ "Low")

The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled in the ship selected status (CS = "Low").
When no chip is selected, the shift register and counter are reset to the initial status.
Serial data is input in the order of D7, D6 D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL).
At the rising edge of the 8th serial clock, the serial data is converted into 8-bit parallel data and this data is processed. The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when $\mathrm{A} 0=$ "High", it is regarded as display data. When A $0=$ "Low", it is regarded as a command.
The A0 input is read in and identified at the rise of the 8 x n-th clock of Serial Clock (SCL) after chip selection.
Fig. 1 shows a timing chart of the serial interface.
Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length.
We recommend the user to perform an operation check with a real machine.
We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.
$\overline{C S}$

S1

Fig. 1

Identification of data bus signals

The SED1230 series identifies data bus signals, as shown in Table 3, by combinations of A0 and $\overline{\mathrm{WR}}(\mathrm{E})$.
Table 3

Common	68 series	80 series	Function
A0	E	WR	
1	1	0	Writing to RAM and symbol register
0	1	0	Writing to internal register (command)

Chip select

The SED1230 series has a chip select pin ($\overline{\mathrm{CS}})$. Only when $\overline{\mathrm{CS}}=$ "Low", MPU interfacing is enabled. In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is input regardless of the $\overline{\mathrm{CS}}$ status.

Power Circuit

This is a low-power-consumption power circuit that generates a voltage required for liquid crystal drive.
The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.
The power circuit incorporated in the SED1230 Series is set for a small-scale liquid crystal panel, so that its display quality may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity.
In this case, an external power supply must be used.
A power circuit function can be selected by power control command. With this, an external power supply and a part of the internal power supply can be used together.

Note 1
Note 2
Note 3

Boosting circuit	Voltage regulat- ing circuit	Voltage follower	External voltage input	Boosting system pin
0	0		-	
\times	0		VouT	OPEN
\times	\times		$\mathrm{V}_{5}=\mathrm{VOUT}^{2}$	OPEN
\times	\times	\times	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}$	OPEN

Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open and give a liquid crystal drive voltage to the VOUT pin from the outside.
Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins open, connect between the V5 pin and VOUT pin, and give a liquid crystal drive voltage from the outside.
Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages V1, V2, V3, V4 and V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and VOUT pins open.

Triple boosting circuit

When a capacitor is connected between CAP1+ and CAP1-, between CAP2+ and CAP2-, and between Vss pin and Vout pin respectively, the potential between the VdD pin and Vss pin is boosted triple and output to the Vout pin. In case of double boosting, remove the capacitor between CAP2+ and CAP2- in connection for triple boosting operation and strap between CAP2- and

Potential during double boosting

Voltage regulating circuit

The voltage regulation circuit regulates the boosted voltage developed at Vout. It outputs the regulated LCD driving voltage at the V5 terminal. An internal resistor can be inserted into the regulation circuit feedback loop providing the following voltage levels at the V5 terminal.

When V5 is required to be different than the above case, leave the internal feedback resistor out of the circuit. V5 can be regulated within a range of $|\mathrm{V} 5|<\mid$ VOUT \mid. It may be calculated by the following formula:

$$
\begin{equation*}
\mathrm{V}_{5}=\left(1+\frac{\mathrm{Rb}}{\mathrm{Ra}}\right) \cdot \mathrm{V}_{\mathrm{REG}} \tag{1}
\end{equation*}
$$

Wherein, Vreg is the constant voltage source inside the SED1230 Series and the voltage is constant at VREG \fallingdotseq 3.1 V . The voltage regulation $\mathrm{VREG} \fallingdotseq 2.1 \mathrm{~V}$ (TYP.) in option 1, and Vreg $=$ Vss in option 2. Voltage regulation of the V5 output is accomplished by connecting a variable resistor between Vr, VdD and V5. For fine adjustment of the V5 voltage, use a combination of fixed resistors R1 and R3 and a variable resistor R2.

Example 1:
Condition: $\mathrm{I}(\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3) \leq 5 \mu \mathrm{~A} \quad \mathrm{~V} 5=-6$ to -8 V

$$
\left.\begin{array}{l}
\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3=8 \mathrm{~V} / 5 \mu \mathrm{~A}=1.6 \mathrm{M} \Omega \\
8 \mathrm{~V}=(1+\mathrm{Rb} / \mathrm{Ra}) 3.0 \mathrm{~V} \quad \mathrm{R} b / \mathrm{Ra}=1.67 \\
6 \mathrm{~V}=(1+\mathrm{Rb} / \mathrm{Ra}) 3.0 \mathrm{~V} \quad \mathrm{Rb} / \mathrm{Ra}=1
\end{array}\right\} \cdots \cdot\left\{\begin{array}{l}
\mathrm{R} 1=600 \mathrm{~K} \Omega \\
\mathrm{R} 2=200 \mathrm{~K} \Omega \\
\mathrm{R} 3=800 \mathrm{~K} \Omega
\end{array}\right.
$$

- Voltage Regulation Circuit Using Electronic Contrast Control Register

The contrast control register controls the liquid crystal driving voltage (V5). This is accomplished by an electronic volume control register set command that adjusts the contrast of the liquid crystal display (see section 122).

The commands provide 4-bits of voltage level data to the electronic volume control register. This provides for the selection of 16 different voltage levels for the liquid crystal driving voltage. When using the electronic volume control function, it is necessary to close the voltage regulation circuit using electronic control commands. For reference information, when the electronic volume control registor value is at $(1,1,1,1)$, the constant current value becomes: IREF $\fallingdotseq 3.65 \mathrm{uA}$.
[An exemplary constant setting when the electronic volume control function is being used]

$$
\begin{aligned}
& \mathrm{V}_{5}=\left(1+\frac{\mathrm{Rb}}{\mathrm{Rc}}\right) \cdot \mathrm{VREG}_{\mathrm{REG}} \\
& \therefore \mathrm{R}_{\mathrm{c}}=\frac{\mathrm{Ra} \times \mathrm{RI}}{\mathrm{Ra}+\mathrm{RI}^{2}} \\
& \quad \mathrm{RI}_{\mathrm{I}}=\frac{\mathrm{VR}}{\mathrm{IREF}}
\end{aligned}
$$

Fig. 9
(1) Determining the V5 voltage setting range by the electronic volume control

Liquid crystal driving voltage V5: max. $-6 \mathrm{~V} \sim$ min. -8 V
V5 variable voltage range: 2 V
(2) Determining the Rb

$$
\begin{aligned}
\mathrm{Rb} & =\mathrm{V} 5 \text { variable voltage range/ IREF }(\text { IREF } \fallingdotseq 3.65 \mu \mathrm{~A} \text { Constant current }) \\
& =2 \mathrm{~V} / 3.65 \mu \mathrm{~A} \\
& =548 \mathrm{~K} \Omega
\end{aligned}
$$

(3) Determining the Ra

$$
\begin{aligned}
\mathrm{Ra} & =\frac{\text { VREG }}{(\mathrm{V} 5 \text { voltage setting max }-\mathrm{VREG}) / \mathrm{Rb}} \text { (Use absolute values for VREG and V5 voltage settings.) } \\
& =\frac{3.1 \mathrm{~V}}{(6 \mathrm{~V}-3.1 \mathrm{~V}) / 548 \mathrm{~K} \Omega} \\
& =585 \mathrm{~K} \Omega
\end{aligned}
$$

(4) Regulating the Ra

Set the electronic volume control register to (D3, D2, D1, D0) $=(1,0,0,0)$ or $(0,1,1,1)$ before matching the Ra value to the optimum contrast.

Since IREF is a simplified constant voltage source, fluctuations upto $\pm 40 \%$ must be taken into consideration, as a dispersion range during manufacture. Meanwhile, the temperature dependency of IreF is: Δ IREF $\fallingdotseq-0.037 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$. Determine the Ra and Rb for the using LCD panel in consideration of the above dispersion and the variation by the temperature.

When using the electronic volume control function, in order to compensate the V5 voltage for dispersion of VREG and IREF, use a variable registor as Ra and perform optimum contrast adjustment according to the above item (4) with each IC chip.

When the electronic volume control function is not being used, set the electronic volume control register to (0,0 , 0,0) using the RES signal or the electronic volume control register setting command.

Liquid crystal voltage generating circuit

The V5 potential is resistance-divided inside the IC so that V_{1}, V_{2}, V_{3} and V_{4} potentials are generated for liquid crystal drive.
Furthermore, the V1, V2, V3 and V4 are impedanceconverted by voltage follower and the then supplied to

When a built-in power supply is used Under a triple boosting

When an external power regulator is used (The built-in power regulator is not used)

the liquid crystal drive circuit.
The liquid crystal drive voltage is fixed to $1 / 5$ bias.
As shown in the diagrams below, the capacitor (C2) for voltage stabilization must be externally connected to the V1 to V5 pins of liquid crystal power pins.

The diagram under a double boosting

Reference setting values: $\mathrm{C} 1: 0.1-4.7 \mu \mathrm{~F}$
C2: $0.1 \mu \mathrm{~F}$

We recommend the user to set the optimum values to capacitors C1 and C2 according to the panel size watching the liquid crystal display and drive waveforms.

When a built-in power supply is not used

Low Power Consumption Mode

The SED1230 Series is provided with the standby mode and sleep mode with the object of low power consumption when the unit is in the standby state.

- Standby Mode

The standby mode is turned on and off by power save command.
In the standby mode only, static display is enabled by CMOS1 and SEGS1.

1. Liquid crystal display output

COM1 ~ COM28, COMS2, COMS3 : VDD level
SEG1 ~ SEG60, SEGS2 ~ SEGS6 : VDD level
COMS1, SEGS1 : Lighting is enabled by static drive.
Perform display control using CMOS1 and SEGS1 by static display control command.
2. DD RAM, CG RAM and symbol register

Written contents do not change and are stored regardless of whether the standby mode is turned on or off.
3. In the operation mode, the status precedent to execution of the standby mode is held.
The internal circuit for dynamic display output stops.
4. Oscillating circuit

For static display, the oscillating circuit must be ON.

© Sleep Mode

After the power circuit and oscillating circuit are turned off by command and the power save command is ex-
ecuted, the sleep mode is set. This mode permits reducing current consumption nearly to the static current value.

1. Liquid crystal display output

COM1 ~ COM28, COMS2, COMS3 : VDD level SEG1 ~ SEG60, SEGS2 ~ SEGS6 : VDD level
COMS1 ~ SEGS1 : VDD level
2. DD RAM, CG RAM and symbol register Written contents do not change and are stored regardless of whether the sleep mode is turned on or off.
3. In the operation mode, the status precedent to execution of the sleep mode is held. All the internal circuits stops.
4. Power circuit and oscillating circuit

Turn off the built-in power supply and oscillating circuit by power save command and power control command.

Reset Circuit

When the RES input goes active, this LSI enters the initialization status.
© Initialization status

1. Static display control

SD0, SD1 = 0 : Display OFF
2. Display ON/OFF control
$\mathrm{C}=0:$ Cursor OFF
$\mathrm{B}=0:$ Blink OFF
$\mathrm{DC}=0:$ Double cursor OFF
$\mathrm{D}=0:$ Display OFF
3. Power save
$\mathrm{O}=0:$ Oscillating circuit OFF
PS $=0$: Power save OFF
4. Power control
$\mathrm{VC}=0:$ Voltage regulating circuit OFF
$\mathrm{VF}=0:$ Voltage follower OFF
$\mathrm{P}=0:$ Boosting circuit OFF
5. System set

CG $=0 \quad:$ Not use of CG RAM
As described in 6.1 MPU Interface, the RES pin is connected to the MPU reset pin and performs initialization concurrently with the MPU.
Regarding the reset signal, a pulse of at least 10μ s or more active level must be input as described in 9. DC Characteristics. Usually, the operation status is started in $1 \mu \mathrm{~s}$ from the edge of the RES signal.
In the SED1230 Series where the built-in liquid crystal power circuit is not used, the RES input must be active when the external liquid crystal power supply is turned on.
After the RES pin goes active, each register is cleared and set to the above set status.
Unless initialization is performed by the RES pin when a power supply voltage is applied, the clear disable status may be provided.

COMMANDS

Table 4 shows a command list. In the SED1230 Series, each data bus signal is identified by a combination of A0 and $\overline{\mathrm{WR}}(\mathrm{E})$.
Command interpretation and execution are performed by only internal timing. This permits high-speed processing.

- Outline of Commands

Command type	Command name	A0	WR
Display control instruction	Cursor Home	0	0
	Static Display Control	0	0
	Display ON/OFF Control	0	0
Power control	Power Save	0	0
	Power Control	0	0
	Electronic Volume Register Set	0	0
Address control instruction	Address Set	0	0
Data input instruction	Data Write	1	0

The execution time of each instruction is determined by the internal processing time of the SED1230 Series. Accordingly, to execute instructions in succession, reserve a time exceeding the cycle time (tcyc) and execute the next instruction.

- Outline of Commands
(1) Cursor Home

This command presets the address counter to 30 H . When the cursor is displayed, this command moves it to column 1 of line 1 .

A0	$\overline{\mathrm{WR}}$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	*	*	*	*

(2) Static Display Control

This command selects display or non-display of static display symbol, and blink ON or OFF. This command is effective in the standby mode only.

A 0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	0	1	0	$*$	$*$	SD 1	SD 0

* : Don't Care

SD1, SD2 = 0, 0 : Display OFF
$0,1:$ Blink $(1 \sim 2 \mathrm{~Hz})$
SD1, SD2 = 1, $0:$ Blink ($3 \sim 4 \mathrm{~Hz}$)
1, 1: All Display ON
(3) Display ON/OFF Control

This command performs display and cursor setting.
Note: Control the symbols that are driven by COMS1 and SEGS1, by the Static Display Control command.

A0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	0	1	1	C	B	DC	D

$$
\begin{array}{lrl}
\text { D } & =0 & : \text { Display OFF } \\
& 1 & : \text { Display ON } \\
& & \\
\text { DC } & =0 & : \text { Double cursor OFF } \\
& 1 & : \text { Double cursor ON } \\
& & \\
\text { B } & 0 & : \text { Cursor blink OFF } \\
& 1 & : \text { Cursor blink ON }
\end{array}
$$

In the blink state, display characters in normal video and display characters in monochrome reverse video are displayed alternately.
The repetition cycle of alternate display is about 1 second.
$\begin{array}{rll}\text { C } & =0 & : \text { Non-display of cursor } \\ 1 & : \text { Display of cursor }\end{array}$
The relationship between C and B registers and cursor display is shown in the following table.

C	B	Cursor display
0	0	Non-display
0	1	Non-display
1	0	Display in monochrome reverse video
1	1	Alternate display of display charac ters in normal video and display characters in monochrome reverse video

The cursor display position corresponds to the position indicated by address counter.

Accordingly, to move the cursor, change the address counter value by the RAM Address Set command or auto increment by writing RAM data.

If the address counter is set at the symbol register position with $(C, B)=(1,0)$, symbols can be caused to blink selectively.
(4) Power Save

This command is used to control the oscillating circuit and set and reset the standby mode or sleep mode.

A0	$\overline{\mathrm{WR}}$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	*	*	O	PS

PS $\quad=0 \quad:$ Power save OFF (reset)
1 : Power save ON (set)
O $\quad=0 \quad$: Oscillating circuit OFF (stop of oscillation)
1 : Oscillating circuit ON (oscilla tion)
(5) Power Control

This command is used to control the operation of the built-in power circuit.

A 0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	1	0	1	0	VC	VF	P

$\begin{aligned} \mathrm{P} & =0 \\ 1 & : \text { Boosting circuit OFF } \\ & \text { Boosting circuit ON }\end{aligned}$
Note: To operate the boosting circuit of the SED1230 Series, the oscillating circuit must be in operation.

VF $\quad=0 \quad$: Voltage follower OFF
1 : Voltage follower ON
VC $\quad=0 \quad$: Voltage regulating circuit OFF
1 : Voltage regulating circuit ON
(6) System Set

This command set the use or non-use of display lines and CG RAM.
Execute this command first after turning on the power supply or after resetting.

A 0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	1	0	0	N 2	N 1	$*$	PS

CG	$=0$	$:$ Non-use of CG RAM
	1	$:$ Use of CG RAM
N2	N1	
0	0	$: 2$ lines
0	1	$: 3$ lines
1	0	$: 4$ lines

(7) Electronic Volume Register Set

This command controls the liquid crystal driving voltage V5 output from the voltage regulating circuit of the built-in liquid crystal power supply, thereby adjusting the gradation of liquid crystal display.
When data is set in the 4-bit register, the liquid crystal driving voltage can take one of 16 voltage states.

A0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	1	1	1	MSB	$*$	$*$	LSB

Hex Code
$70 \mathrm{H} \sim 7 \mathrm{FH}$

MSB	.	.	LSB	\mid V5 \mid	\mid IREF \|
0	0	0	0	Small	$0.0 \mu \mathrm{~A}$
			$:$		$:$
		.	$:$		$:$
1	1	1	1	Large	About
$3.65 \mu \mathrm{~A}$					

When the electronic volume function is not used, set $(\mathrm{A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)=(0,0,0,0)$.
(8) RAM Address Set

This command sets addresses to write data into the DD RAM, CG RAM and symbol register in the address counter.

When the cursor is displayed, the cursor is displayed at the display position corresponding to the DDRAM address set by this command.

(1) The settable address length is ADDRESS $=00 \mathrm{H}$ to 7 FH .
(2) Before writing data into the RAM, set the data write address by this command. Next, when data is written in succession, the address is automatically incremented.

RAM Map (SED1230, SED1231, SED1232)

RAM Map (SED1233)

-: Unused
(9) Data Write

A0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
1	0	DATA							

(1) This command writes data into the DD RAM, CG RAM or symbol register.
(2) After this command is executed, the address counter is automatically incremented by 1 . This permits writing data in succession.
<Example of Data Writing>
The following is an example of writing one-line data into the DD RAM in succession.

Table 4 SED1230 Series Command List

Command	Code											Function
				D			D4	D3	D2	D1	1 D0	
(1) Cursor Home	0	0	0	0			1	*	*	*	*	Moves the cursor to the home position.
(2) Static Display Control	0	0	0	0			0	*	*		$\begin{aligned} & \text { D1 } \\ & \text { SD0 } \end{aligned}$	Sets the display mode of static display symbol SD1, SD0 $=0,0$ (display OFF), 0,1 ($1-2 \mathrm{~Hz}$ blink), 1,0 (34 Hz blink), 1,1 (all display ON)
(3) Display ON/OFF Control	0	0	0	0	1		1	C	B	DC		Sets cursor ON/OFF (C), cursor blink ON//OFF (B), double cursor ON/OFF (DC) and display ON/OFF (D). $\mathrm{C}=1$ (cursor ON) 0 (cursor OFF), $\mathrm{B}=1$ (blink ON) 0 (blink OFF) $\mathrm{DC}=1$ (double cursor ON) 0 (double cursor OFF), $\mathrm{D}=1$ (display ON) D $=0$ (display OFF)
(4) Power Save	0	0	0	1			0	*	*	0		Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (0). PS $=1$ (power save ON) 0 (power save OFF), $0=1$ (oscillating circuit ON) 0 (oscillating circuit OFF)
(5) Power Control	0	0	0	1	0		1	0	vc	VF		Sets voltage regulating circuit ON/OFF and boosting circuit ON/OFF (P). $\mathrm{VC}=1$ (voltage regulating circuit ON) 0 (voltage regulating circuit OFF) $\mathrm{VF}=1$ (voltage follower ON) 0 (voltage follower OFF), $\mathrm{P}=1$ (boosting circuit ON) 0 (boosting circuit OFF)
(6) System Set	0	0	0	1			0	N2	N1	*		Sets the use or non-use of CG RAM and display lines ($\mathrm{N} 2, \mathrm{~N} 1$). $\mathrm{CG}=1$ (use of CG RAM) 0 (non-use of CG RAM), $\mathrm{N} 2, \mathrm{~N} 1=0,0$ (2 lines) 0,1 (3 lines) 1,0 (4 lines)
(7) Electronic Volume Register	0	0	0	1			1		SB		LSB	Sets the electronic volume register value.
(8) RAM Address Set	0	0	1	ADDRESS								Sets the DD RAM, CG RAM or symbol register address.
(9) RAM Write	1	0	DATA									Writes data into the DD RAM, CG RAM or symbol register address.
(10) NOP	0	0	0	0	0		0	0	0	0	0	Non-operation command
(11) Test Mode	0	0	0	0			0	1	0	1	10	Command for IC chip test. Don't use this command.

CHARACTER GENERATOR Character Generator ROM (CG ROM)

The SED1230 Series is provided with a character generator ROM consisting of a up to 256-type characters. Each character size is 5×7 dots.

Table 5 shows a character code table of the SED1230 Series.
The 4 characters of character codes 00 H to 03 H are set by the System Set command to specify for which of CG ROM and CG RAM they are to be used.

The CG ROM of the SED1230 Series is a mask ROM and compatible with the user-dedicated CG ROM. Please ask us for further information of it.

Regarding changed CG ROM, it is defined in product name as follows:
(Example) SED $1230 \mathrm{D}_{\underset{\sim}{0} \mathrm{~B}}$
\uparrow
Digit for CG ROM
pattern change

SED123* DA*

Table 5

SED123* DB*

SED123* DG*

Character Generator RAM（CG RAM）

The SED1230 Series is provided with a CG RAM that permits user－programming character patterns so that they can be displayed with a high degree of freedom for signal display．

Before using the CG RAM，select the use of CG RAM by the System Set command．
The capacity of the CG RAM is 140 bits and arbitrary patterns of 4 types consisting of 5×7 dots can be registered．
The relationship among CG RAM patterns，CG RAM addresses，and character codes is shown below．

Character code	RAM address		CGRAM data（character pattern）								Display
			D7	－	－	，	，		－		
00H	$00 \mathrm{H} \sim 06 \mathrm{H}$	0	＊	＊	＊	0	1	1	1	1	$\square \square \square \square \square$
02H	10H～16H	1	＊	＊	＊	1	0	0	0	0	■ดロด口
		2	＊	＊	＊	1	0	0	0	0	$\square \square \square \square \square$
		3	＊	＊	＊	0	1	1	1	1	$\square \square \square \square \square$
		4	＊	＊	＊	0	0	0	0	1	$\square \square \square \square \square$
		5	＊	＊	＊	0	0	0	0	1	$\square \square \square \square \square$
		6	＊	＊	＊	1	1	1	1	0	$\square \square \square \square \square$
01H	08H～0EH	8	＊	＊	＊	0	0	1	0	0	$\square \square \square \square \square$
03H	18H～1EH	9	＊	＊	＊	0	0	1	0	0	$\square \square \square \square \square$
		A	＊	＊	＊	0	1	1	1	0	$\square \square \square \square \square$
		B	＊	＊	＊	0	1	1	1	0	口ா■■ロ
		C	＊	＊	＊	0	1	1	1	0	$\square \square \square \square \square$
		D	＊	＊	＊	1	1	1	1	1	1■■
		E	＊	＊	＊	1	1	1	1	1	■■■■■
				nus			hara	Dis	data	play	

Symbol Register

The SED1230 Series is provided with a symbol register that permits displaying each symbol so that symbol display may be performed on the screen.
The capacity of the symbol register is 64 bits. In case of 12 digits, 48 symbols can be displayed. In case of 16 digits, 64 symbols can be displayed.
The relationship among symbol register display patterns, RAM addresses and write data is shown below.
(1) SED1230, SED1231, SED1232

(2) SED1233

RAM address		Symbol Bits								
		D7	D6	D5	D4	D3	D2	D1	D0	
70H~7FH	0	*	*	*	33	1	34	2	*	1: Display 0: Not display
	1	*	*	*	35	3	36	4	*	
	:	:								
	E	*	*	*	61	29	62	30	*	
	F	*	*	*	63	31	64	32	*	

Notes
1: If the symbol segment size is 1.5 times or more greater than the other dots, it is recommended to be divided into COMS2 and COMS3 and driven separately.
2: The segments other than symbol display must not be crossed through COMS2 or COMS3. The COMS3 symbol register must be set to all zeros if crossing.

ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit
Power supply voltage (1)		Vss	$-6.0 \sim+0.3$	V
Power supply voltage (2)		V5	-12.0~+0.3	V
Power supply voltage (3)		$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$	V5~+0.3	V
Input voltage		Vin	Vss-0.3~+0.3	V
Output voltage		Vo	Vss-0.3~+0.3	V
Operating temperature		Topr	$-30 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage temperature	TCP	Tstr	$-55 \sim+100$	${ }^{\circ} \mathrm{C}$
	Bare chip		$-65 \sim+125$	

Notes: 1. All the voltage values are based on $\mathrm{VDD}=0 \mathrm{~V}$.
2. For voltages of V_{1}, V_{2}, V_{3} and V_{4}, keep the condition of $V_{D D} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5}$ and $V_{D D} \geq V_{s S}$ $\geq \mathrm{V} 5 \geq$ Vout at all times.
3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction. In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the reliability of the LSI.

DC CHARACTERISTICS

VDD $=0 \mathrm{~V}$, Vss $=-3.6 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified.

Item		Symbol		Condition	min	typ	max	Unit	Applicable pin	
Power supply voltage (1)	Recommended operation	Vss			-3.6	-3.0	-2.4	V	$\begin{aligned} & \text { Vss } \\ & { }^{*} 1 \end{aligned}$	
	Operable				-5.5	-3.0	-2.4			
Power supply voltage (2)	Recommended operation	V5			-8.0		-5.0	V	$\begin{aligned} & \hline \text { V5 } \\ & \text { *2 } \\ & \hline \end{aligned}$	
	Operable				-11.0		-4.5			
	Operable	$\mathrm{V} 1, \mathrm{~V} 2$			$0.6 \times \mathrm{V}_{5}$		VDD	V	$\mathrm{V}_{1}, \mathrm{~V}_{2}$	
	Operable	V3, V4			Vdd		$0.4 \times \mathrm{V} 5$	V	$\mathrm{V}_{3}, \mathrm{~V} 4$	
High-level input voltage		VIHC			$0.2 \times \mathrm{Vss}$		VDD	V	*3	
Low-level input voltage		VILC			Vss		$0.8 \times \mathrm{Vss}$	V	*3	
Input leakage current		ILI	VIN = VDD or V	-1.0		1.0	$\mu \mathrm{A}$	*3		
LC driver ON resistance		Ron	$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}=0.1 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{5}=-7.0 \mathrm{~V}$		20	40	$\mathrm{K} \Omega$	$\begin{aligned} & \text { COM,SEG } \\ & { }^{*} 4 \\ & \hline \end{aligned}$	
Static current consumption		IDDQ				0.1	5.0	$\mu \mathrm{A}$	VDD	
Dynamic current consumption		IDD	Display state	$\mathrm{V}_{5}=-7 \mathrm{~V}$ without load			100	$\mu \mathrm{A}$	VDD *5	
		Standby state	Oscillation ON, Power OFF			20	$\mu \mathrm{A}$	VDD *6		
		Sleep state	Oscillation OFF, Power OFF			5	$\mu \mathrm{A}$	VDD		
		Access state	fcyc=200KHz			500	$\mu \mathrm{A}$	VDD *7		
Frame frequency			ffr	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	Vss=-3.0V	70	100	130	Hz	*11
Input pin capacity			Cln	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{f}=1 \mathrm{MHz}$		5.0	8.0	pF	*3

Reset time	tR		1.0			$\mu \mathrm{~s}$	${ }^{*} 8$
Reset pulse width	tRW		10			$\mu \mathrm{~s}$	${ }^{*} 9$
Reset start time	tRES		50			ns	${ }^{*} 9$

	Input voltage	Vss		-3.6		-2.4	V	*10
	Booster output voltage	Vout	Double boosting state	-7.2			V	Vout
			Triple boosting state	-10.8				
	Voltage follower operating voltage	V5		-11.0		-4.5	V	
	Reference voltage (standard)	VReG	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-3.5	-3.1	-2.7	V	*12
	Reference voltage (option 1)	VREG(VS1)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-2.4	-2.1	-1.8	V	*12
	Reference voltage (option 2)	Vreg(VSS)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	Vss	Vss	Vss	V	*12

*1: A wide operating voltage range is guaranteed but an abrupt voltage variation in the access status of the MPU is not guaranteed.
*2: The operating voltage range is applicable to the case where an external power supply is used.

[^1]*4: This is a resistance value when a voltage of 0.1 V is applied between output pin SEGn, SEGSn, COMn or COMSn, and each power pin ($\mathrm{V} 1, \mathrm{~V} 2, \mathrm{~V} 3$ or V 4). It is specified in the range of operating voltage (2).

Ron $=0.1 \mathrm{~V} / \Delta \mathrm{I}$
($\Delta \mathrm{I}$: Current flowing when 0.1 V is applied between the power and output)
*5: Character " "display. This is applicable to the case where no access is made from the MPU and the built-in power circuit and oscillating circuit are in operation.
*6: This is applicable to the case where the built-in power circuit is OFF and the oscillating circuit is in operation in the standby mode.
*7: Current consumption when data is always written by fcyc.
The current consumption in the access state is almost proportional to the access frequency (fcyc).
When no access is made, only IDD (I) occurs.
8: tR (reset time) indicates the internal circuit reset completion time from the edge of the RES signal. Accordingly, the SED123 usually enters the operating state after tr.
*9: Specifies the minimum pulse width of the RES signal. It is reset when a signal having the pulse width greater than tRW is entered.
*10:When operating the boosting circuit, the power supply VSS must be used within the input voltage range.
*11:The fosc frequency of the oscillator circuit for internal circuit drive may differ from the fBST boosting clock on some models. The following provides the relationship between the fosc frequency, fBST boosting clock, and fFR frame frequency.
foSC $=($ No. of digits $) \times(1 /$ Duty $) \times$ fFR
fBST $=(1 / 2) \times(1 /$ No. of digits $) \times$ foSC
Example: The SED1230 has 13 digits of display

$$
\text { and } 1 / 30 \text { duty. }
$$

$$
\text { fosc }=13 \times 30 \times 100=39 \mathrm{kHz}
$$

$$
\mathrm{fBST}=(1 / 2) \times(1 / 13) \times 39 \mathrm{~K}=1.5 \mathrm{kHz}
$$

*12: The VREG reference voltage has the temperature characteristics of approximately $-0.17 \% /{ }^{\circ} \mathrm{C}$ (standard specifications). An optional model having the temperature characteristics of approximately $-0.04 \% /{ }^{\circ} \mathrm{C}$ is also available. The voltage of power supply terminal Vss can be selected as the reference power supply as an option without using the reference voltage inside the IC. In this case, however, a regulator is used for the external power supply (VDD - Vss). The voltage accuracy of V5 depends on that of the regulator used. The CGROM modification rules apply to the optional models.

All signal timings are based on 20% and 80% of Vss signals.

TIMING CHARACTERISTICS

(1) System Bus Write Characteristic I (80 series MPU)

[Vss $=-3.6 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, $\overline{C S}$	t AH8		30		ns
Address setup time		t AW8		60		ns
System cycle time	$\overline{\text { WR }}$	t CYC8	Vss $=-3.0$	500		ns
			-2.7	550		
		t cc	-2.4	650		
Control pulse width (WR)			Vss $=-3.0$	100		ns
			-2.7	120		
			-2.4	150		
Data setup time	D0 ~ D7	t DS8		100		ns
Data hold time		t DH8		50		ns

*1: For the rise and fall of an input signal, set a value not exceeding 25 ns .
*2: Every timing is specified on the basis of 20% and 80% of Vss.
*3: For A0 and $\overline{\mathrm{CS}}$, the same time is not required. Input signals so that A 0 and $\overline{\mathrm{CS}}$ may satisfy taw8 and taH8 respectively.
(2) System Bus Write Characteristic II (68 series MPU)

[Vss $=-3.6 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, $\overline{\text { CS }}$	t CYC6	Vss $=-3.0$	500		ns
			-2.7	550		
Address setup time		t AW6	-2.4	650		
Address hold time			60		ns	
Data setup time	t AH6		30		ns	
Data hold time			D7	t DS6		100
			ns			
Enable pulse width	E DH6	t EW	Vss $=-3.0$	100		ns
		-2.7	120			
			-2.4	150		

*1: tCYC6 denotes the cycle of the E signal in the $\overline{\mathrm{CS}}$ active state. tCYC6 must be reserved after $\overline{\mathrm{CS}}$ becomes active.
*2: For the rise and fall of an input signal, set a value not exceeding 25 ns .
*3: Every timing is specified on the basis of 20% and 80% of Vss.
*4: For A 0 and $\overline{\mathrm{CS}}$, the same timing is not required. Input signals so that A0 and $\overline{\mathrm{CS}}$ may satisfy taw6 and tah6 respectively.
(3) Serial Interface

$\left[\mathrm{Vss}=-3.6 \mathrm{~V}\right.$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$]

*1: For the rise and fall of an input signal, set a value not exceeding 25 ns .
*2: Every timing is specified on the basis of 20% and 80% of Vss.

MPU INTERFACE (REFERENCE EXAMPLES)

The SED1230 Series can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the SED1230 Series can be operated by less signal lines.

80 Series MPU

68 Series MPU

Serial Interface

INTERFACE TO LCD CELLS (REFERENCE)

12 columns by 2 lines, 5×7-dot matrix segments and symbols

System Setup

N 2	N 1
0	0

LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS)

Instruction Setup Example (Reference Only)

(1) Initial setup

Waiting for 20 msec or more
Command input
(8) Power control commands - P, VF, VC: On

Command input:
(9) Electronic volume register setup - Data: Appropriate value

End of initialization
\square
(2) Display mode

(Note 1)
(Note 1)

Note 1: Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area must satisfy the following conditions (for RAM clear).

- DDRAM: Write the 20H data (character code).
- CGRAM: Write the 00H data (null data).
- Symbol register: Write the 00 H data (null data).

As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not, unexpected display may result.
(3-1) Selecting the Standby mode

(3-2) Releasing the Standby mode

Standby mode

Command input:
(1) Display on/off control command

- D: On (Display)
(2) Power save command
(Note 2)
(Note 2)
(Note 2)
- PS: Off (Power save)
- O: On (Oscillation)
(Note 2)

> Input of electronic volume register command
> - Data: $(0,0,0,0)$

> Input of power control commands
> - P, VF, VC: Off

Input of electronic volume register command

- Data: Appropriate value

Return to normal operation (initial status).

Note 2: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.
(4-1) Selecting the Sleep mode

End of initialization
Normal operation
(Power Save is released and
oscillator circuit is turned ON.)

Command input:
(1) Display on/off control command

- D: Off (Display)
(2) Power save command
- PS: On (Power save)
- O: Off (Oscillation)
(3) Power control commands
- P, VF, VC: Off

Enter the Sleep mode.
(4-2) Releasing the Sleep mode
Sleep mode

Command input:
(1) Display on/off control command - D: On (Display)
(2) Power save command

- PS: Off (Power save)
- O: On (Oscillation)
\square
Wait for 20 msec or more.
Input of electronic volume register command
- Data: (0, 0, 0, 0)

> Input of power control commands
> - P, VF, VC: On

Input of electronic volume register command

- Data: Appropriate value

Return to normal operation (initial status).

Note 3: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

SED1234/35 Series LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW 7-1
FEATURES 7-1
BLOCK DIAGRAM 7-2
SED1234/35 SERIES, CHIP SPECIFICATION 7-3
DESCRIPTION OF PINS 7-8
FUNCTIONAL DESCRIPTION 7-11
COMMANDS 7-17
CHARACTER GENERATOR 7-21
ABSOLUTE MAXIMUM RATINGS 7-27
DC CHARACTERISTICS 7-28
TIMING CHARACTERISTICS 7-30
MPU INTERFACE (REFERENCE EXAMPLES) 7-33
INTERFACE TO LCD CELLS (REFERENCE) 7-34
LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS) 7-35

OVERVIEW

The SED 1234,1235 Series is a dot matrix LCD controller driver for character display, and can display a maximum of 48 characters, 4 user-defined characters, and a maximum of 48 symbols by means of 4-bit, 8-bit or serial data sent from a microcomputer.
A built-in character generator ROM is prepared for 256 character types, and each character font consists of 5×7 dots. A user-defined character RAM for four characters of 5×7 dots are incorporated, and a symbol register is also incorporated. With these, it is possible to apply this Series to display with a high degree of freedom. This Series can operate handy units with a minimum power consumption by means of its low power consumption and sleep mode.
SED1234, and 1235 depending on the duty of use and the number of display columns.

FEATURES

- Built-in diplay RAM

48 characters +4 user-defined characters +48 symbols

- CG ROM (for up to 256 characters), CG RAM (4 characters), and symbol register (48 symbols)
- Number of display columns \times number of lines $(12$ columns +2 segment for signal) $\times 4$ lines +48 symbols: SED1234
$(12$ columns +2 segment for signal $) \times 2$ lines +48 symbols: SED1235
- CR oscillation circuit (on-chip C and R)
- High-speed MPU interface

Interfacing with both 68 series and 80
series MPU
Interfacing in 4 bits/8 bits

- Serial interface
- Character font 5×7 dots
- Duty ratio $1 / 16$ (SED1235)

1/30 (SED1234)

- Simple command setting
- Built-in liquid crystal driving power circuit

Power boosting circuit, power regulating circuit, voltage follower $\times 4$

- Built-in electronic volume function
- Low power consumption
$100 \mu \mathrm{~A}$ Max. (In normal operation mode:
Including the operating current of the built-in power supply)
- Power supply

VDD - VSs (logic section): -2.4 V to -3.6 V
VDD - V5 (liquid crystal drive section)

$$
:-5.0 \mathrm{~V} \text { to }-8.0 \mathrm{~V}
$$

- Wide operating temperature range
$\mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$
- CMOS process
(Pad Pitch)
- COB assemble $126 \mu \mathrm{~m}$ min.
- Delivery form: Chip SED123*D*A, SED123*D*C
- This IC is not designed with a protection against radioactive rays.

BLOCK DIAGRAM

SED1234/35 SERIES, CHIP SPECIFICATION

SED1234D ${ }_{\text {** }}$	1/30 duty
SED1235D ${ }_{\text {类 }}$	$1 / 16$ duty
\#1 Column for CG ROM pattern change	
Chip size:	$10.23 \times 3.11 \mathrm{~mm}$
Pad pitch:	$126 \mu \mathrm{~m}$ (Min.)
Chip thickness:	$625 \pm 25 \mu \mathrm{~m}$ (SED123*D*A)
	$525 \pm 25 \mu \mathrm{~m}$ (SED123*D*C)

1) A1 pad specification

Pad size: A $91 \mu \mathrm{~m} \times 90 \mu \mathrm{~m}$ B $114 \mu \mathrm{~m} \times 114 \mu \mathrm{~m}$
<SED1234D ${ }_{* *>}$ (1/2)
Unit: $\mu \mathrm{m}$

PAD		COORDINATES	
No.	Name	X	Y
1	VDD	-4077	-1371
2	Vss	-3526	
3	V5	-2975	
4	V4	-2424	
5	V3	-1855	
6	V2	-1287	
7	V1	-719	
8	Vo	-151	
9	VR	400	
10	Vout	968	
11	CAP2-	1519	
12	CAP2+	2070	
13	CAP1-	2638	
14	CAP1+	3189	
15	Vss	3757	
16	VDD	4308	
17	(NC)	4883	
18	(NC)	4883	
19	(NC)	4883	
20	(NC)	4883	
21	Vs1	4929	
22	P/S	4924	
23	IF	4924	
24	RES	4924	
25	COMS2	4950	
26	COM1	4950	
27	COM2	4950	
28	COM3	4950	
29	COM4	4950	
30	COM5	4950	
31	COM6	4950	
32	COM7	4950	
33	COM8	4896	
34	COM9	4769	
35	COM10	4642	
36	COM11	4515	
37	COM12	4388	
38	COM13	4262	
39	COM14	4135	
40	SEGS2	4008	
41	SEG1	3881	
42	SEG2	3754	
43	SEG3	3627	
44	SEG4	3501	
45	SEG5	3374	
46 47	SEG6	3247	
48	SEG8	2993	
49	SEG9	2866	
50	SEG10	2740	
51	SEG11	2613	
52	SEG12	2486	
53	SEG13	2359	
54	SEG14	2232	\checkmark

PAD		COORDINATES	
No.	Name	X	Y
55	SEG15	2106	1406
56	SEG16	1979	
57	SEG17	1852	
58	SEG18	1725	
59	SEG19	1598	
60	SEG20	1471	
61	SEG21	1345	
62	SEG22	1218	
63	SEG23	1091	
64	SEG24	964	
65	SEG25	837	
66	SEG26	710	
67	SEG27	584	
68	SEG28	457	
69	SEG29	330	
70	SEG30	203	
71	SEG31	76	
72	SEG32	-51	
73	SEG33	-177	
74	SEG34	-304	
75	SEG35	-431	
76	SEG36	-558	
77	SEG37	-685	
78	SEG38	-812	
79	SEG39	-938	
80	SEG40	-1065	
81	SEG41	-1192	
82	SEG42	-1319	
83	SEG43	-1446	
84	SEG44	-1572	
85	SEG45	-1699	
86	SEG46	-1826	
87	SEG47	-1953	
88	SEG48	-2080	
89	SEG49	-2207	
90	SEG50	-2333	
91	SEG51	-2460	
92	SEG52	-2587	
93	SEG53	-2714	
94	SEG54	-2841	
95	SEG55	-2968	
96	SEG56	-3094	
97	SEG57	-3221	
98	SEG58	-3348	
99	SEG59	-3475	
100	SEG60	-3602	
101	SEGS6	-3729	
102	COM28	-3855	
103	COM27	-3982	
104	COM26	-4109	
105	COM25	-4236	
106	COM24	-4363	\checkmark
107	COM23	-4679	1405
108	COM22	-4806	1405

<SED1234D ${ }_{* *>}$ (2/2)

PAD		COORDINATES	
No.	Name	\mathbf{X}	\mathbf{Y}
109	COM21	-4933	1405
110	COM20	-4964	1094
111	COM19		
112	COM18		966
113	COM117		839
114	COM16		712
115	COM15		584
116	COMS3		457
117	A0		330
118	WR		202
119	CS		75
120	D7		-52
121	D6		-180
122	D5		-307
123	D4		-434
124	D3		-562
125	D2		-689
126	D1		-816
127	D0		-943

<SED1235D ${ }_{* *>}$ (1/2)
Unit: $\mu \mathrm{m}$

PAD		COORDINATES	
No.	Name	X	Y
1	VdD	-4077	-1371
2	Vss	-3526	
3	V5	-2975	
4	V4	-2424	
5	V3	-1855	
6	V2	-1287	
7	V1	-719	
8	Vo	-151	
9	VR	400	
10	Vout	968	
11	CAP2-	1519	
12	CAP2+	2070	
13	CAP1-	2638	
14	CAP1+	3189	
15	Vss	3757	
16	Vdd	4308	,
17	(NC)	4883	-1343
18	(NC)	4883	-1233
19	(NC)	4883	-1123
20	(NC)	4883	-1013
21	Vs1	4929	-903
22	P/S	4924	-184
23	IF	4924	-57
24	RES	4924	70
25	COMS2	4950	255
26	COM1	4950	382
27	COM2	4950	510
28	COM3	4950	637
29	COM4	4950	764
30	COM5	4950	891
31	COM6	4950	1019
32	COM7	4950	1146
33	COM8	4896	1406
34	COM9	4769	
35	COM10	4642	
36	COM11	4515	
37	COM12	4388	
38	COM13	4262	
39	COM14	4135	
40	SEGS2	4008	
41	SEG1	3881	
42	SEG2	3754	
43	SEG3	3627	
44	SEG4	3501	
45	SEG5	3374	
46 47	SEG6	3247	
47 48	SEG7	3120 2993	
49	SEG9	2866	
50	SEG10	2740	
51	SEG11	2613	
52	SEG12	2486	
53	SEG13	2359	
54	SEG14	2232	\downarrow

PAD		COORDINATES	
No.	Name	X	Y
55	SEG15	2106	-1406
56	SEG16	1979	
57	SEG17	1852	
58	SEG18	1725	
59	SEG19	1598	
60	SEG20	1471	
61	SEG21	1345	
62	SEG22	1218	
63	SEG23	1091	
64	SEG24	964	
65	SEG25	837	
66	SEG26	710	
67	SEG27	584	
68	SEG28	457	
69	SEG29	330	
70	SEG30	203	
71	SEG31	76	
72	SEG32	-51	
73	SEG33	-177	
74	SEG34	-304	
75	SEG35	-431	
76	SEG36	-558	
77	SEG37	-685	
78	SEG38	-812	
79	SEG39	-938	
80	SEG40	-1065	
81	SEG41	-1192	
82	SEG42	-1319	
83	SEG43	-1446	
84	SEG44	-1572	
85	SEG45	-1699	
86	SEG46	-1826	
87	SEG47	-1953	
88	SEG48	-2080	
89	SEG49	-2207	
90	SEG50	-2333	
91	SEG51	-2460	
92	SEG52	-2587	
93	SEG53	-2714	
94	SEG54	-2841	
95	SEG55	-2968	
96	SEG56	-3094	
97	SEG57	-3221	
98	SEG58	-3348	
99	SEG59	-3475	
100	SEG60	-3602	
101	SEGS6	-3729	
102	(NC)	-3855	
103	(NC)	-3982	
104	(NC)	-4109	
105	(NC)	-4236	
106	(NC)	-4363	\checkmark
107	(NC)	-4679	1405
108	(NC)	-4806	1405

<SED1235D ${ }_{* *>}$ (2/2)

PAD		COORDINATES	
No.	Name	X	Y
109	COM14	-4933	1405
110	COM13	-4964	1094
111	COM12		966
112	COM11		839
113	COM10		712
114	COM9		584
115	COM8		457
116	COMS3		330
117	A0		202
118	WR		75
119	CS		-52
120	D7		-180
121	D6		-307
122	D5		-434
123	D4		-562
124	D3		-689
125	D2		-816
126	D1		-943
127	D0	\checkmark	-1071

DESCRIPTION OF PINS

Power Pins

Pin name	1/0	Description	Q'ty
VDD	Power supply	Logic + power pin. Also used as MPU power pin Vcc.	2
Vss	Power supply	Logic - power pin. Connected to the system GND.	2
$\begin{aligned} & \hline \mathrm{V}_{0}, \mathrm{~V}_{1} \\ & \mathrm{~V}_{2}, \mathrm{~V}_{3} \\ & \mathrm{~V}_{4}, \mathrm{~V}_{5} \end{aligned}$	Power supply	Multi-level power supply for liquid crystal drive. The voltage determined in the liquid crystal cell is resistancedivided or impedance-converted by operational amplifier, and the resultant voltage is applied. The potential is determined on the basis of VDD and the following equation must be respected. $V_{D D}=V_{0} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5}, V_{\text {DD }} \geq V_{S S} \geq V_{5} \geq V_{\text {OUT }}$ When the built-in power supply is ON , the following voltages are given to pins V_{1} to V_{4} by built-in power circuit: $\begin{aligned} & V_{1}=1 / 5 V_{5} \\ & V_{2}=2 / 5 V_{5} \\ & V_{3}=3 / 5 V_{5} \\ & V_{4}=4 / 5 V_{5} \end{aligned}$	6
Vs1	0	Power supply voltage output pin for oscillating circuit. Don't connect this pin to an external load.	1

LCD Power Circuit Pins

Pin name	I/O	Description	Q'ty
CAP1+	O	Capacitor positive side connecting pin for boosting. This pin connects the capacitor with pin CAP1-.	1
CAP1-	O	Capacitor negative side connecting pin for boosting. This pin connects a capacitor with pin CAP+.	1
CAP2+	O	Capacitor positive side connecting pin for boosting. This pin connects a capacitor with pin CAP2-.	1
CAP2-	O	Capacitor negative side connecting pin for boosting. This pin connects a capacitor with pin CAP2+.	1
Vout	O	Output pin for boosting. This pin connects a smoothing capacitor with VSS pin.	1
VR	I	Voltage regulating pin. This pin gives a voltage between VDD and V5 by resistance-division of voltage.	1

Pins for System Bus Connection

Pin name	I/O	Description							Q'ty
$\begin{gathered} \text { D7 (SI) } \\ \text { D6 (SCL) } \\ \text { D5 ~ D0 } \end{gathered}$	I	8 -bit input data bus. These pins are connected to a 8 -bit or 16 -bit standard MPU data bus. When P/S = "Low", the D7 and D6 pins are operated as a serial data input and a serial clock input respectively.							8
		P/S	D7	D6	D5 ~ D0	$\overline{\mathrm{CS}}$	A0		
		"Low"	SI	SCL	-	$\overline{\mathrm{CS}}$	A0		
		"High"	D7	D6	D5 ~ D0	$\overline{\text { CS }}$	A0		
A0	1	Usually, this pin connects the least significant bit of the MPU address bus and identifies a data command. 0 : Indicates that D0 to D7 are a command. 1 : Indicates that D0 to D7 are display data.							1
RES	I	In case of a 68 series MPU, initialization can be performed by changing RES \sqcap. In case of an 80 series MPU, initialization can be performed by changing \downarrow. A reset operation is performed by edge sensing of the RES signal. An interface type for the $68 / 80$ series MPU is selected by input level after initialization. " L " : 80 series MPU interface "H" : 68 series MPU interface							1
$\overline{\mathrm{CS}}$	1	Chip select signal. Usually, this pin inputs the signal obtained by decoding an address bus signal. At the "Low" level, this pin is enabled.							1
WR (E)	1	<When connecting an 80 series MPU> Active "Low". This pin connects the $\overline{\mathrm{WR}}$ signal of the 80 series MPU. The signal on the data bus is fetched at the rise of the $\overline{W R}$ signal. <When connecting a 68 series MPU> Active "High". This pin becomes an enable clock input of the 68 series MPU.							1
P/S	1	This pin switches between serial data input and parallel data input.							1
		P/S		Select	Data/Comm		Data	Serial Clock	
		"High"		S	A0		D0~D7	-	
		"Low"			A0		SI	SCL	
IF	1	Interface data length select pin for parallel data input. "High": 8-bit parallel input "Low": 4-bit parallel input When P/S = "Low", connect this pin to VdD or Vss.							1

Liquid Crystal Drive Circuit Signals

SED1234

Pin name	I/O	Description	Q'ty
COM1~ COM28	O	Common signal output pin (for characters)	28
COMS2, CMOS3	O	Common signal output pin (except for characters) CMOS2, CMOS3: Common output for symbol display	2
SEG1~ SEG60	O	Segment signal output pin (for characters)	60
SEGS2, SEGS6	O	Segment signal output pin (except for characters) SEGS2, SEGS6: Segment output for signal output	2

SED1235

Pin name	I/O	Description	Q'ty
COM1~ COM14	O	Common signal output pin (for characters) COM8~COM14:W output	14 (21)
COMS2, CMOS3	O	Common signal output pin (except for characters) CMOS2, CMOS3: Common output for symbol display	2
SEG2~ SEG60	O	Segment signal output pin (for characters)	60
SEGS2, SEGS6	O	Segment signal output pin (except for characters) SEGS2, SEGS6: Segment output for signal output	2

FUNCTIONAL DESCRIPTION

MPU Interface

Selection of interface type

In the SED1234, SED1235, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting "High" or "Low" as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table 1.

Table 1

P/S	Type	$\overline{\mathrm{CS}}$	A 0	$\overline{\mathrm{WR}}$	SI	SCL	$\mathrm{D} 0 \sim \mathrm{D} 7$
"High"	Parallel Input	$\overline{\mathrm{CS}}$	A 0	$\overline{\mathrm{WR}}$	-	-	$\mathrm{D} 0 \sim \mathrm{D7}$
"Low"	Serial Input	$\overline{\mathrm{CS}}$	A 0	-	SI	SCL	-

Parallel Input
In the SED1234, SED1235, when parallel input is selected ($\mathrm{P} / \mathrm{S}=$ "High"), it can be directly connected to the 80 series MPU bus or 68 series MPU bus, as shown in Table 2, if either "High" or "Low" is selected as RES pin polarity after a reset input, because the RES pin has an MPU select function.
Selection between 8 bits and 4 bits is performed by command.
Table 2

RES input polarity	Type	A0	$\overline{\text { WR }}$	$\overline{\mathrm{CS}}$	D0~D7
High-to-low active	68 series	A0	E	$\overline{\mathrm{CS}}$	D0~D7
Low-to-high active	80 series	A0	$\overline{\mathrm{WR}}$	$\overline{\mathrm{CS}}$	$\mathrm{D} 0 \sim \mathrm{D7}$

Interface with 4-bit MPU interface

When data transfer is performed by 4-bit interface ($\mathrm{IF}=0$), an 8 -bit command, data and address are divided into two parts.

$\overline{W R}$

D7 to D4

Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then perform writing.

Serial interface ($\mathrm{P} / \mathrm{S}=$ "Low")

The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled in the ship selected status ($\mathrm{CS}=$ "Low").
When no chip is selected, the shift register and counter are reset to the initial status.
Serial data is input in the order of D7, D6 D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL).
At the rising edge of the 8th serial clock, the serial data is converted into 8 -bit parallel data and this data is processed.
The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when A0 = "High", it is regarded as display data. When $\mathrm{A} 0=$ "Low", it is regarded as a command.
The A0 input is read in and identified at the rise of the 8 x n -th clock of Serial Clock (SCL) after chip selection.
Fig. 1 shows a timing chart of the serial interface.
Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length.
We recommend the user to perform an operation check with a real machine.
We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.

Fig. 1

Identification of data bus signals

The SED1234, SED1235 series identifies data bus signals, as shown in Table 3, by combinations of A0 and $\overline{\mathrm{WR}}(\mathrm{E})$.
Table 3

Common	68 series	80 series	Function
A 0	E	$\overline{\mathrm{WR}}$	
1	1	0	Writing to RAM and symbol register
0	1	0	Writing to internal register (command)

Chip select

The SED1234, SED1235 series has a chip select pin ($\overline{\mathrm{CS}})$. Only when $\overline{\mathrm{CS}}=$ "Low", MPU interfacing is enabled. In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is input regardless of the $\overline{\mathrm{CS}}$ status.

Power Circuit

This is a low-power-consumption power circuit that generates a voltage required for liquid crystal drive.
The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.
The power circuit incorporated in the SED1234, SED1235 Series is set for a small-scale liquid crystal panel, so that its display quality may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity. In this case, an external power supply must be used.

A power circuit function can be selected by power control command. With this, an external power supply and a part of the internal power supply can be used together.

Note 1
Note 2
Note 3

Boosting circuit	Voltage regulat- ing circuit	Voltage follower	External voltage input	Boosting system pin
0	0	0	-	
\times	0	0	VouT	OPEN
\times	\times	0	$\mathrm{~V}_{5}=\mathrm{V}_{\text {OUT }}$	OPEN
\times	\times	\times	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}$	OPEN

Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open and give a liquid crystal drive voltage to the Vout pin from the outside.
Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins open, connect between the V5 pin and Vout pin, and give a liquid crystal drive voltage from the outside.
Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$ and V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and Vout pins open.

Triple boosting circuit

When a capacitor is connected between CAP1+ and CAP1-, between CAP2+ and CAP2-, and between Vss pin and Vout pin respectively, the potential between the VDD pin and Vss pin is boosted triple and output to the Vout pin. In case of double boosting, remove the capacitor between CAP2+ and CAP2- in connection for triple boosting operation and strap between CAP2- and

Potential during double boosting

Voltage regulating circuit

The voltage regulation circuit regulates the boosted voltage developed at Vout. It outputs the regulated LCD driving voltage at the V5 terminal. An internal resistor can be inserted into the regulation circuit feedback loop providing the following voltage levels at the V5 terminal.

When V5 is required to be different than the above case, leave the internal feedback resistor out of the circuit. V5 can be regulated within a range of $|\mathrm{V} 5|<\mid$ VOUT \mid. It may be calculated by the following formula:

$$
\mathrm{V} 5=\left(1+\frac{\mathrm{Rb}}{\mathrm{Ra}}\right) \cdot \mathrm{VREG} \cdot
$$

\qquad
Wherein, Vreg is the constant voltage source inside the SED1230 Series and the voltage is constant at VREG \fallingdotseq 3.1 V . Voltage regulation of the V5 output is accomplished by connecting a variable resistor between VR, VDD and V5. For fine adjustment of the V5 voltage, use a combination of fixed resistors R1 and R3 and a variable resistor R2.

Vout pin. Then, a double boosted output can be obtained from the Vout pin (CAP2-).
The boosting circuit uses a signal from the oscillator ourput.
Accordingly, it is necessary that the oscillating circuit must be in operation. The potential relationship of boosting is shown below.

Potential during triple boosting

The voltage regulator circuit carries a temperature gradient of about $-0.17 \% /{ }^{\circ} \mathrm{C}$ under VREG outputs. When any other temperature gradient is required, connect a thermistor in series to the output voltage regulating register.

Since the VR terminal has a high input impedance, it is necessary to take noise suppression measures such as shortening the input wiring and shielding the wiring run.

Example 1:
Condition: $\mathrm{I}(\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3) \leq 5 \mu \mathrm{~A} \quad \mathrm{~V} 5=-6$ to -8 V
Setting: $\left.\quad \begin{array}{ll}\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3=8 \mathrm{~V} / 5 \mu \mathrm{~A}=1.6 \mathrm{M} \Omega \\ & 8 \mathrm{~V}=(1+\mathrm{Rb} / \mathrm{Ra}) 3.0 \mathrm{~V} \mathrm{Rb} / \mathrm{Ra}=1.67 \\ & 6 \mathrm{~V}=(1+\mathrm{Rb} / \mathrm{Ra}) 3.0 \mathrm{~V} \mathrm{Rb} / \mathrm{Ra}=1\end{array}\right\} \cdots\left\{\begin{array}{l}\mathrm{R} 1=600 \mathrm{~K} \Omega \\ \mathrm{R} 2=200 \mathrm{~K} \Omega \\ \mathrm{R} 3=800 \mathrm{~K} \Omega\end{array}\right.$

- Voltage Regulation Circuit Using Electronic Contrast Control Register

The contrast control register controls the liquid crystal driving voltage (V5). This is accomplished by an electronic volume control register set command that adjusts the contrast of the liquid crystal display (see section 122).

The commands provide 4-bits of voltage level data to the electronic volume control register. This provides for the selection of 16 different voltage levels for the liquid crystal driving voltage. When using the electronic volume control function, it is necessary to close the voltage regulation circuit using electronic control commands. For reference information, when the electronic volume control registor value is at $(1,1,1,1)$, the constant current value becomes: IREF $\fallingdotseq 3.65 \mu \mathrm{~A}$.
[An exemplary constant setting when the electronic volume control function is being used]

$$
\begin{aligned}
& \mathrm{V} 5=\left(1+\frac{\mathrm{Rb}}{\mathrm{Rc}}\right) \cdot \mathrm{VREG}^{\cdots} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .(2) \\
& \mathrm{Rc}_{\mathrm{c}}=\frac{\mathrm{Ra} \times \mathrm{RI}_{\mathrm{I}}}{\mathrm{Ra}+\mathrm{RI}^{\prime}} \\
& \mathrm{RI}=\frac{\mathrm{VR}}{\mathrm{IREF}}
\end{aligned}
$$

Fig. 9
(1) Determining the V5 voltage setting range by the electronic volume control

Liquid crystal driving voltage V5: max. $-6 \mathrm{v} \sim \min .-8 \mathrm{~V}$
V 5 variable voltage range: 2 V
(2) Determinig the Rb
$\mathrm{Rb}=\mathrm{V} 5$ variable voltage range/ IREF
$=2 \mathrm{~V} / 3.65 \mu \mathrm{~A}$
$=548 \mathrm{~K} \Omega$
(3) Determining the Ra

$$
\begin{aligned}
\mathrm{Ra} & =\frac{\text { VREG }}{(\mathrm{V} 5 \text { voltage setting max }-\mathrm{VREG}) / \mathrm{Rb}} \text { (Use absolute values for VREG and V5 voltage settings.) } \\
& =\frac{3.1 \mathrm{~V}}{(6 \mathrm{~V}-3.1 \mathrm{~V}) / 548 \mathrm{~K} \Omega} \\
& =585 \mathrm{~K} \Omega
\end{aligned}
$$

(4) Regulating the Ra

Set the electronic volume control register to $(\mathrm{D} 3, \mathrm{D} 2, \mathrm{D} 1, \mathrm{D} 0)=(1,0,0,0)$ or $(0,1,1,1)$ before matching the Ra value to the optimum contrast.

Since IREF is a simplified constant voltage source, fluctuations upto $\pm 40 \%$ must be taken into consideration, as a dispersion range during manufacture. Meanwhile, the temperature dependency of IREF is : Δ IREF $\fallingdotseq-0.037 \mu \mathrm{~A} /{ }^{\circ} \mathrm{C}$. Determine the Ra and Rb for the using LCD panel in consideration of the above dispersion and the variation by the temperature.

When using the electronic volume control function, in order to compensate the V5 voltage for dispersion of VREG and IREF, use a variable registor as Ra and perform optimum contrast adjustment according to the above item (4) with each IC chip.

When the electronic volume control function is not being used, set the electronic volume control register to (0,0 , 0,0) using the RES signal or the electronic volume control register setting command.

Liquid crystal voltage generating circuit

The V5 potential is resistance-divided inside the IC so that V_{1}, V_{2}, V_{3} and V_{4} potentials are generated for liquid crystal drive.
Furthermore, the V1, V2, V3 and V4 are impedanceconverted by voltage follower and the then supplied to

When a built-in power supply is used
Under a triple boosting

When an external power regulator is used
(The built-in power regulator is not used)

the liquid crystal drive circuit.
The liquid crystal drive voltage is fixed to $1 / 5$ bias.
As shown in the diagrams below, the capacitor (C2) for voltage stabilization must be externally connected to the V1 to V5 pins of liquid crystal power pins.

The diagram under a double boosting

When a built-in power supply is not used

Reference setting values: $\mathrm{C} 1: 0.1-4.7 \mu \mathrm{~F} \quad$ We recommend the user to set the optimum values to capacitors C 1 C2: $0.1 \mu \mathrm{~F}$ and C2 according to the panel size watching the liquid crystal display and drive waveforms.

Low Power Consumption Mode

The SED1234, SED1235 Series is provided with the standby mode and sleep mode with the object of low power consumption when the unit is in the standby state.

- Sleep Mode

After the power circuit and oscillating circuit are turned off by command and the power save command is executed, the sleep mode is set. This mode permits reducing current consumption nearly to the static current value.

1. Liquid crystal display output

COM1 ~ COM28, COMS2, COMS3 : VDD level SEG1 ~ SEG60, SEGS2, SEGS6 : VDD level
2. DD RAM, CG RAM and symbol register

Written contents do not change and are stored regardless of whether the sleep mode is turned on or off.
3. In the operation mode, the status precedent to execution of the sleep mode is held. All the internal circuits stops.
4. Power circuit and oscillating circuit

Turn off the built-in power supply and oscillating circuit by power save command and power control command.

Reset Circuit

When the RES input goes active, this LSI enters the initialization status.

1. Display ON/OFF control
$\mathrm{C}=0:$ Cursor OFF
$\mathrm{B} \quad=0 \quad:$ Blink OFF
$\mathrm{DC}=0$: Double cursor OFF
$\mathrm{D}=0:$ Display OFF
2. Power save
$\mathrm{O}=0:$ Oscillating circuit OFF
PS $=0$: Power save OFF
3. Power control
$\mathrm{VC}=0:$ Voltage regulating circuit OFF
$\mathrm{VF}=0:$ Voltage follower OFF
$\mathrm{P}=0:$ Boosting circuit OFF
4. System set

CG $=0:$ No use of CG RAM
As described in 6.1 MPU Interface, the RES pin is connected to the MPU reset pin and performs initialization concurrently with the MPU.
Regarding the reset signal, a pulse of at least 10μ s or more active level must be input as described in 9. DC Characteristics. Usually, the operation status is started in $1 \mu \mathrm{~s}$ from the edge of the RES signal.
In the SED 1230 Series where the built-in liquid crystal power circuit is not used, the RES input must be active when the external liquid crystal power supply is turned on.

COMMANDS

Table 4 shows a command list. In the SED1230 Series, each data bus signal is identified by a combination of A0 and $\overline{\mathrm{WR}}(\mathrm{E})$.
Command interpretation and execution are performed by only internal timing. This permits high-speed processing.

- Outline of Commands

Command type	Command name	A0	WR
Display control instruction	Cursor Home	0	0
	Display ON/OFF Control	0	0
	Power Save	0	0
	Power Control Rectronic Volume	0	0
Address control instruction	Address Set	0	0
Data input instruction	Data Write	1	0

The execution time of each instruction is determined by the internal processing time of the SED1230 Series. Accordingly, to execute instructions in succession, reserve a time exceeding the cycle time (tcyc) and execute the next instruction.

- Outline of Commands
(1) Cursor Home

This command presets the address counter to 30 H . When the cursor is displayed, this command moves it to column 1 of line 1 .

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	*	*	*	*

(2) Display ON/OFF Control

This command performs display and cursor setting.
Note: Control the symbols that are driven by COMS1 and SEGS1, by the Static Display Control command.

A 0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	0	1	1	C	B	DC	D

D $\quad=0 \begin{aligned} & : \text { Display OFF } \\ & 1\end{aligned}$

DC $\quad=0 \quad$: Double cursor OFF
1 : Double cursor ON

B $\quad=0 \quad:$ Cursor blink OFF
1 : Cursor blink ON
In the blink state, display characters in normal video and display characters in monochrome reverse video are displayed alternately.
The repetition cycle of alternate display is about 1 second.

$$
\begin{aligned}
\mathrm{C} & =0 \\
1 & : \text { Non-display of cursor } \\
& \text { Display of cursor }
\end{aligned}
$$

The relationship between C and B registers and cursor display is shown in the following table.

C	B	Cursor display
0	0	Non-display
0	1	Non-display
1	0	Display in monochrome reverse video
1	1	Alternate display of display charac ters in normal video and display characters in monochrome reverse video

The cursor display position corresponds to the position indicated by address counter.

Accordingly, to move the cursor, change the address counter value by the RAM Address Set command or auto increment by writing RAM data.

If the address counter is set at the symbol register position with $(C, B)=(1,0)$, symbols can be caused to blink selectively.
(3) Power Save

This command is used to control the oscillating circuit and set and reset sleep mode.

A 0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	1	0	0	$*$	$*$	O	PS

PS $\quad=0 \quad:$ Power save OFF (reset)
1 : Power save ON (set)
$\mathrm{O} \quad=0 \quad:$ Oscillating circuit OFF (stop of oscillation)
1 : Oscillating circuit ON (oscilla tion)
(4) Power Control

This command is used to control the operation of the built-in power circuit.

A0	$\overline{\mathrm{WR}}$	D 7	D 6	D	D 4	D 3	D 2	D 1	D 0
0	0	0	1	0	1	0	VC	VF	P

$\mathrm{P} \quad=0 \quad:$ Boosting circuit OFF
1 : Boosting circuit ON
Note: To operate the boosting circuit the oscillating circuit must be in operation.

VF $\quad=0 \quad$: Voltage follower OFF
1 : Voltage follower ON
VC $\quad=0 \quad:$ Voltage regulating circuit OFF
1 : Voltage regulating circuit ON
(5) System Set

This command set the use or non-use of display lines and CG RAM.
Execute this command first after turning on the power supply or after resetting.

A0	$\overline{\mathrm{WR}}$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	N2	N1	*	PS

CG	$=0$	$:$ Use of CG RAM
	1	$:$ Non-use of CG RAM
N2	N1	
0	0	$: 2$ lines
0	1	$: 3$ lines
1	0	$: 4$ lines

(6) Electronic Volume Register Set This command controls the liquid crystal driving voltage V5 output from the voltage regulating circuit of the built-in liquid crystal power supply,
thereby adjusting the gradation of liquid crystal display.
When data is set in the 4-bit register, the liquid crystal driving voltage can take one of 16 voltage states.

A 0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	1	1	1	MSB	$*$	$*$	LSB

Hex Code
$70 \mathrm{H} \sim 7 \mathrm{FH}$

MSB	.	.	LSB	\mid V5 \mid	\mid IREF \mid
0	0	0	0	Small	$0.0 \mu \mathrm{~A}$
			$:$	$:$	$:$
		.		$:$	$:$
1	1	1	1	Large	$3.65 \mu \mathrm{~A}$

When the electronic volume function is not used, set $(\mathrm{A} 3, \mathrm{~A} 2, \mathrm{~A} 1, \mathrm{~A} 0)=(0,0,0,0)$.
(7) RAM Address Set

This command sets addresses to write data into the DD RAM, CG RAM and symbol register in the address counter.

When the cursor is displayed, the cursor is displayed at the display position corresponding to the DDRAM address set by this command.

A 0	WR	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	1	ADDRESS						

(1) The settable address length is ADDRESS $=00 \mathrm{H}$ to 7 FH .
(2) Before writing data into the RAM, set the data write address by this command. Next, when data is written in succession, the address is automatically incremented.

RAM Map

[^2](8) Data Write

A 0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
1	0			DATA					

(1) This command writes data into the DD RAM, CG RAM or symbol register.
(2) After this command is executed, the address counter is automatically incremented by 1 . This permits writing data in succession.
<Example of Data Writing>
The following is an example of writing one-line data into the DD RAM in succession.

Note: When executing instructions in succession, reserve a time exceeding tCYC and execute the next instruction.

Table 4 SED1234/SED1235 Command List

Command	Code											Function
	A0		D7	D6	D5	D4		D3	D2	D1	D0	
(1) Cursor Home	0	0	0	0	0	1		*	*	*	*	Moves the cursor to the home position.
(2) Display ON/OFF Control	0	0	0	0	1	1		C	B	DC	D	Sets cursor ON/OFF (C), cursor blink ON//OFF (B), double cursor ON/OFF (DC) and display ON/OFF (D). $\mathrm{C}=1$ (cursor ON) 0 (cursor OFF), $\mathrm{B}=1$ (blink ON) 0 (blink OFF) DC = 1 (double cursor ON) 0 (double cursor OFF), $\mathrm{D}=1$ (display ON) $\mathrm{D}=0$ (display OFF)
(3) Power Save	0	0	0	1	0	0		*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (0). $\mathrm{PS}=1$ (power save ON) 0 (power save OFF), $0=1$ (oscillating circuit ON) 0 (oscillating circuit OFF)
(4) Power Control	0	0	0	1	0	1		0	VC	VF	P	Sets voltage regulating circuit ON/OFF and boosting circuit ON/OFF (P). $\mathrm{VC}=1$ (voltage regulating circuit ON) 0 (voltage regulating circuit OFF) $\mathrm{VF}=1$ (voltage follower ON) 0 (voltage follower OFF), $\mathrm{P}=1$ (boosting circuit ON) 0 (boosting circuit OFF)
(5) System Set	0	0	0	1	1	0		N2	N1	*	CG	Sets the use or non-use of CG RAM and display lines (N2, N1). CG $=1$ (use of CG RAM) 0 (non-use of CG RAM), $\mathrm{N} 2, \mathrm{~N} 1=0,0$ (2 lines) 0,1 (3 lines) 1,0 (4 lines)
(6) Electronic Volume Register	0	0	0	1	1	1		MS	B		SB	Sets the electronic volume register value.
(7) RAM Address Set	0	0	1	ADDRESS								Sets the DD RAM, CG RAM or symbol register address.
(8) RAM Write	1	0	DATA									Writes data into the DD RAM, CG RAM or symbol register address.
(9) NOP	0	0	0	0	0	0		0	0	0	0	Non-operation command
(10) Test Mode	0	0	0	0	0	0		1	0	1	0	Command for IC chip test. Don't use this command.

CHARACTER GENERATOR Character Generator ROM (CG ROM)

The SED1234/1235 is provided with a character generator ROM consisting of a up to 256-type characters. Each character size is 5×7 dots.

Table 5 shows a character code table of the SED1230 Series.
The 4characters of character codes 00 H to 03 H are set by the System Set command to specify for which of CG ROM and CG RAM they are to be used.

The CG ROM of the SED1234/1235 is a mask ROM and compatible with the use-dedicated CG ROM. Please ask us for further information of it.

Regarding changed CG ROM, it is defined in product name as follows:
(Example) SED $1234 \mathrm{D}_{\underline{0} \boldsymbol{A}}$
\uparrow
Digit for CG ROM
pattern change

SED123*DA*

SED123*DB*

SED123*DG*

Character Generator RAM (CG RAM)

The SED1230 Series is provided with a CG RAM that permits user-programming character patterns so that they can be displayed with a high degree of freedom for signal display.

Before using the CG RAM, select the use of CG RAM by the System Set command.
The capacity of the CG RAM is 140 bits and arbitrary patterns of 4 types consisting of 5×7 dots can be registered.
The relationship among CG RAM patterns, CG RAM addresses, and character codes is shown below.

Symbol Register

The SED1234, 1235 provided with a symbol register that permits displaying each symbol so that symbol display may be performed on the screen.
The capacity of the symbol register is 48 bits. In case of 48 symbols can be displayed.
The relationship among symbol register display patterns, RAM addresses and write data is shown below.

Notes: 1. We recommend to drive a symbol by dividing it into COMS2 and COMS3 separately if it is larger than other dots for 1.5 times or more.
2. Do not cross a segment (other than those used for symbol display) with COMS2 or COMS3. If segment crossing is required, set the symbol registers of COMS3 to all zeros (0s).

ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit
Power supply voltage (1)		Vss	$-6.0 \sim+0.3$	V
Power supply voltage (2)		V5	-16.0~+0.3	V
Power supply voltage (3)		$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$	V5~+0.3	V
Input voltage		VIN	Vss-0.3~+0.3	V
Output voltage		Vo	Vss-0.3~+0.3	V
Operating temperature		Topr	$-30 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage temperature	TCP	Tstr	$-55 \sim+100$	${ }^{\circ} \mathrm{C}$
	Bare chip		$-65 \sim+125$	

Notes: 1. All the voltage values are based on VDD $=0 \mathrm{~V}$.
2. For voltages of V_{1}, V_{2}, V_{3} and V_{4}, keep the condition of $V_{D D} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5}$ and $V_{D D} \geq V_{s s}$ $\geq \mathrm{V}_{5} \geq$ Vout at all times.
3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction. In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the reliability of the LSI.

SED1234/35 Series

DC CHARACTERISTICS

VDD $=0 \mathrm{~V}$, Vss $=-3.6 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified.

Item		Symbol		Condition	min	typ	max	Unit	Applicable pin	
Power supply voltage (1)	Recommended operation	Vss			-3.6	-3.0	-2.4	V	VSS	
	Operable				-5.5	-3.0	-2.4		*1	
Power supply voltage (2)	Recommended operation	V5			-8.0		-5.0	V	V_{5}	
	Operable				-11.0		-4.5		*2	
	Operable	$\mathrm{V}_{1}, \mathrm{~V}_{2}$			$0.6 \times \mathrm{V}_{5}$		VDD	V	$\mathrm{V}_{1}, \mathrm{~V}_{2}$	
	Operable	$\mathrm{V}_{3}, \mathrm{~V}_{4}$			VDD		$0.4 \times \mathrm{V}_{5}$	V	$\mathrm{V}_{3}, \mathrm{~V}_{4}$	
High-level input voltage		VIHC			$0.2 \times \mathrm{Vss}$		VDD	V	*3	
Low-level input voltage		VILC			Vss		$0.8 \times$ Vss	V	*3	
Input leakage current		ILI	VIN = VDD or	S-1.0		1.0	$\mu \mathrm{A}$	*3		
LC driver ON resistance		Ron	$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}=0.1 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{5}=-7.0 \mathrm{~V}$		20	40	K Ω	$\begin{aligned} & \text { COM,SEG } \\ & \text { *4 } \end{aligned}$	
Static current consumption		IDDQ				0.1	5.0	$\mu \mathrm{A}$	VDD	
Dynamic current consumption		IDD	Display state	V5 $=-7 \mathrm{~V}$ without load			100	$\mu \mathrm{A}$	VDD *5	
		Standby state	Oscillation ON, Power OFF			20	$\mu \mathrm{A}$	VDD *6		
		Sleep state	Oscillation OFF, Power OFF			5	$\mu \mathrm{A}$	VDD		
		Access state	fcyc=200KHz			500	$\mu \mathrm{A}$	VDD *7		
Frame frequency			ffR	$\mathrm{Ta}=25^{\circ} \mathrm{C} \quad \mathrm{V}$	=-3.0V	70	100	130	Hz	*11
Input pin capacity			CIN	$\mathrm{Ta}=25^{\circ} \mathrm{C} \quad \mathrm{f}=$	MHz		5.0	8.0	pF	*3

Reset time	tR		1.0			$\mu \mathrm{~s}$	${ }^{*} 8$
Reset pulse width	tRW		10			$\mu \mathrm{~s}$	${ }^{*} 9$
Reset start time	tres		50			ns	${ }^{*} 9$

	Input voltage	Vss		-3.6		-2.4	V	*10
	Booster output voltage	Vout	Double boosting state	-7.2			V	Vout
			Triple boosting state	-10.8				
	Voltage follower operating voltage	V5		-11.0		-4.5	V	
	Reference voltage (standard)	VREG	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-3.5	-3.1	-2.7	V	*12
	Reference voltage (option)	VREG(VS1)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-2.4	-2.1	-1.8	V	*12

*1: A wide operating voltage range is guaranteed but an abrupt voltage variation in the access status of the MPU is not guaranteed.
*2: The operating voltage range is applicable to the case where an external power supply is used.
*3: D0 ~ D5, D6 (SCL), D7 (SI), A0, RES, $\overline{\mathrm{CS}} \overline{\mathrm{WR}}(\mathrm{E})$, P/S, IF
*4: This is a resistance value when a voltage of 0.1 V is applied between output pin SEGn, SEGSn, COMn or

COMSn, and each power pin ($\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ or V 4). It is specified in the range of operating voltage (2).

Ron $=0.1 \mathrm{~V} / \Delta \mathrm{I}$
($\Delta \mathrm{I}$: Current flowing when 0.1 V is applied between the power and output)
*5: Character "
 "display. This is applicable to the case where no access is made from the MPU and the built-in power circuit and oscillating circuit are in operation.
*6: This is applicable to the case where the built-in power circuit is OFF and the oscillating circuit is in operation in the standby mode.
*7: Current consumption when data is always written by fcyc.
The current consumption in the access state is almost proportional to the access frequency (fcyc).
When no access is made, only IDD (I) occurs.
*8: tR (reset time) indicates the internal circuit reset completion time from the edge of the RES signal. Accordingly, the SED $123 *$ usually enters the operating state after tr.
*9: Specifies the minimum pulse width of the RES signal. It is reset when a signal having the pulse width greater than tRW is entered.
*10: When operating the boosting circuit, the power supply Vss must be used within the input voltage range.
*11: The fosc frequency of the oscillator circuit for internal circuit drive may differ from the fBST boosting clock on some models. The following provides the relationship between the fOSC frequency, fBST boosting clock, and fFR frame frequency.
foSC $=($ No. of digits $) \times(1 /$ Duty $) \times$ fFR
fBST $=(1 / 2) \times(1 /$ No. of digits $) \times$ fosC
Example: The SED1230 has 13 digits of display and $1 / 30$ duty.
fosc $=13 \times 30 \times 100=39 \mathrm{kHz}$ fBST $=(1 / 2) \times(1 / 13) \times 39 \mathrm{~K}=1.5 \mathrm{kHz}$
*12: The VREG reference voltage has the temperature characteristics of approximately $-0.17 \% /{ }^{\circ} \mathrm{C}$ (standard specifications). An optional model having the temperature characteristics of approximately $-0.04 \% /{ }^{\circ} \mathrm{C}$ is also available. The CGROM modification rules apply to the optional models.

All signal timings are based on 20% and 80% of Vss signals.

TIMING CHARACTERISTICS

(1) System Bus Write Characteristic I (80 series MPU)

[Vss $=-3.6 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, $\overline{C S}$	t AH8		30		ns
Address setup time		t AW8		60		ns
System cycle time	WR	t CYC8	Vss $=-3.0$	500		ns
			-2.7	550		
			-2.4	650		
Control pulse width (WR)		t cc	Vss $=-3.0$	100		ns
			-2.7	120		
			-2.4	150		
Data setup time	D0 ~ D7	t DS8		100		ns
Data hold time		t DH8		50		ns

*1: For the rise and fall of an input signal, set a value not exceeding 25 ns .
*2: Every timing is specified on the basis of 20% and 80% of Vss.
*3: For A0 and $\overline{\mathrm{CS}}$, the same time is not required. Input signals so that A 0 and $\overline{\mathrm{CS}}$ may satisfy taw8 and taH8 respectively.
(2) System Bus Write Characteristic II (68 series MPU)

[Vss $=-3.6 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified]

*1: tCYC6 denotes the cycle of the E signal in the $\overline{\mathrm{CS}}$ active state. tCYC6 must be reserved after $\overline{\mathrm{CS}}$ becomes active.
*2: For the rise and fall of an input signal, set a value not exceeding 25 ns .
*3: Every timing is specified on the basis of 20% and 80% of Vss.
*4: For A 0 and $\overline{\mathrm{CS}}$, the same timing is not required. Input signals so that A 0 and $\overline{\mathrm{CS}}$ may satisfy taw6 and taH6 respectively.
(3) Serial Interface

[Vss $=-3.6 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$]

*1: For the rise and fall of an input signal, set a value not exceeding 25 ns .
*2: Every timing is specified on the basis of 20% and 80% of Vss.

MPU INTERFACE (REFERENCE EXAMPLES)

The SED1234, 1235 can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the SED1234, 1235 Series can be operated by less signal lines.

80 Series MPU

68 Series MPU

INTERFACE TO LCD CELLS (REFERENCE)

12 columns by 2 lines, 5×7-dot matrix segments and symbols

System Setup

N2	N 1
0	0

LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS)

V_{5}
V_{4}

V3
V2
V1
VDD
V_{1}

V_{4}

Instruction Setup Example (Reference Only)

(1) Initial setup

VDD-Vss power ON
Power regulation Input of reset signal Command status - Static display control - Display on/off control - Off - Power save - Power control - System reset - Others are undefined. O Off

Waiting for $10 \mu \mathrm{sec}$ or more
Command input: (Asterisk indicates any command sequence.)
(1) System setup command
(*) Static display control command
(Valid in Standby mode only)
(*) Display on/off control command

- D: On (Display)
(*) Electronic volume register setup
- Data: (0, 0, 0, 0)
(*) Power save command
- PS: Off (Power save)
- O: On (Oscillation)
(6) RAM address setup
(7) Data writing

Waiting for 20 msec or more
Command input
(8) Power control commands

- P, VF, VC: On

Command input:
(9) Electronic volume register setup

- Data: Appropriate value

End of initialization
(2) Display mode

End of initialization Input of RAM address setup command Input of RAM (data) write command Display of written data

Note 1: Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area must satisfy the following conditions (for RAM clear).

- DDRAM: Write the 20H data (character code).
- CGRAM: Write the 00H data (null data).
- Symbol register: Write the 00 H data (null data).

As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not, unexpected display may result.
(3-1) Selecting the Standby mode

End of initialization
Normal operation
(Power Save is released and oscillator circuit is turned ON.)

Command input:

(1) Display on/off control command

- D: Off (Display)
(2) Power save command
- PS: On (Power save)
- O: On (Oscillation)
(3) Power control commands
- P, VF, VC: Off

(3-2) Releasing the Standby mode
\square
Command input:
(1) Display on/off control command - D: On (Display)
(2) Power save command
- PS: Off (Power save)
- O: On (Oscillation)

> | Input of electronic volume register |
| :--- |
| command |
| - Data: $(0,0,0,0)$ |

Input of power control commands

- P, VF, VC: Off

Input of electronic volume register command

- Data: Appropriate value

Return to normal operation (initial status).

Note 2: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.
(4-1) Selecting the Sleep mode

Command input:
(1) Display on/off control command
(Note 3)

- D: Off (Display)
(2) Power save command
- PS: On (Power save)
- O: Off (Oscillation)
(3) Power control commands
- P, VF, VC: Off

Enter the Sleep mode.
(4-2) Releasing the Sleep mode

Command input:
(1) Display on/off control command

- D: On (Display)
(2) Power save command
- PS: Off (Power save)
- O: On (Oscillation)

Wait for 20 msec or more.
Input of electronic volume register command

- Data: (0, 0, 0, 0)

Input of power control commands

- P, VF, VC: On

Input of electronic volume register command

- Data: Appropriate value

Return to normal operation (initial status).

Note 3: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

SED1240 Series LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW 8-1
FEATURES 8-1
BLOCK DIAGRAM 8-2
CHIP SPECIFICATIONS 8-3
DESCRIPTION OF PINS 8-10
DESCRIPTION OF FUNCTIONS 8-13
DESCRIPTION OF COMMANDS 8-22
CHARACTER GENERATOR 8-37
ABSOLUTE MAXIMUM RATINGS 8-52
DC CHARACTERISTICS 8-53
AC CHARACTERISTICS 8-55
MPU INTERFACE CONNECTION EXAMPLES 8-58
INTERFACE WITH LCD CELL 8-59
LIQUID CRYSTAL DRIVE WAVEFORM 8-62
OPTIONS LIST 8-65
EXAMPLE OF TCP ARRANGEMENT 8-66

OVERVIEW

The SED1240 Series is a character display dot matrix LCD controller driver．This driver can display up to 64 characters and 6 user－defined characters，and up to 160 symbols according to the 4－bit，8－bit or serial data which is sent from a microcomputer．
The built－in character generator ROM is provided with up to 544 types of character fonts having a structure of 5 $\times 8$ dots．Up to 256 types can be continuously called by register option selection．This can cope with many different character fonts by uses and countries and permits a wider range of use．This driver incorporates a user－ defined character RAM for 6 characters of 5×8 dots and can be used for the display of higher degree of freedom by means of a symbol register．
The driver can operate handy units at the minimum power consumption by using its merit of lower power consumption，standby mode，and sleep mode．

FEATURES

－Built－in display data RAM 80－character +6 －character user－defined characters +160 symbols
－CGROM（for up to 544 characters），CGRAM（6 characters），symbol register（160 symbols）
－Display digits \times Number of lines
＜Ordinary mode＞
（1）$(16$ digits $) \times 4$ lines +160 symbols +10 static irons （SED1240）
（2）$(16$ digits $) \times 3$ lines +160 symbols +10 static icons （SED1241）
（3）（ 16 digits）$\times 2$ lines +160 symbols +10 static icons （SED1242）
＜Standby mode＞
（1） 10 static icons（SED1240）
（2） 10 static icons（SED1241）
（3） 10 static icons（SED1242）
－Vertical double－size display function
－Line vertical scroll function
－Line blink function
－Symbol blink function
－Built－in CR oscillating circuit（Built－in C, R ）
－External clock input
－High－speed MPU interface Interface with both MPUs of 68 series $/ 80$ series Interface by 4 bits $/ 8$ bits
－Serial interface
－Character font 5×8 dots
－Duty ratio（1） $1 / 34$（SED1240）
（2） $1 / 26$（SED1241）
（3） $1 / 18$（SED1242）
－Simple command setup
－Built－in liquid crystal drive power circuit The boosting circuit，voltage regulating circuit，voltage follower $\times 4$ ，and resistor for power regulating circuit for bias select commands are incorporated．
－Built－in electronic volume function
－Lower power consumption
$80 \mu \mathrm{~A} \max \quad$（at ordinary operation（during display）：Including the internal power supply operating current）
$500 \mu \mathrm{~A} \max \quad$（at ordinary operation（during access）：fcyc $=200 \mathrm{KHz}$ ， including the internal power supply operating current）
$20 \mu \mathrm{~A} \max \quad$（in standby mode：Oscillation ON，power OFF，static icon display）
$5 \mu \mathrm{~A} \max \quad$（in sleep mode：oscillation OFF， power OFF，display OFF）
－Power supply：

Vdd－VSs	1.8 V to 5.5 V
VDD－Vss2	1.8 V to 5.5 V
VDd－V5	5.5 V to 16.0 V

－Wide operating temperature range
$\mathrm{Ta}=-30$ to $+85^{\circ} \mathrm{C}$
－CMOS process
－Pad pitch $90 \mu \mathrm{~m}$ Min
－Delivery form
Chip（gold bump product）SED124＊D＊＊

TCP
SED124＊T＊＊
－This IC is not designed against radiation and strong light and noise．

BLOCK DIAGRAM

CHIP SPECIFICATIONS

SED124* $* * * * *$
Digits for CGROM pattern change
Number of display lines
0: 4-line display
1: 3-line display
2: 2-line display

Chip size:	$8.70 \times 2.80 \mathrm{~mm}$
Pad pitch:	$90 \mu \mathrm{~m}(\mathrm{Min})$.
Chip thickness (reference value):	$625 \pm 50 \mu \mathrm{~m}\left(\right.$ SED $\left.124 * \mathrm{D}_{* *}\right)$

Au bump specifications
Bump size A TYPE
$60.0 \mu \mathrm{~m} \times 81.5 \mu \mathrm{~m}$
B TYPE
$81.5 \mu \mathrm{~m} \times 60.0 \mu \mathrm{~m}$
C TYPE
$85.0 \mu \mathrm{~m} \times 85.0 \mu \mathrm{~m}$
D TYPE $\quad 60.0 \mu \mathrm{~m} \times 85.0 \mu \mathrm{~m}$
Bump height (reference value) $\quad 22.5 \mu \mathrm{~m} \pm 5.5 \mu \mathrm{~m}$
(For bump types, refer to the pad coordinate diagram.)

Note: The board of this IC has VDD potential. It is recommended to stabilize power supply by connecting the board to the VDD potential at the time of mounting.
<Pad Coordinates> SED1240***

PAD			COORDINATES		PAD			COORDINATES	
No.	Name [B	UMP TYPE]	X	Y	No.	Name [BU	UMP TYPE]	X	Y
1	NC	[B TYPE]	-4191	-1250	55	P/S	[C TYPE]	1543	-1237
2	NC	[C TYPE]	-3941	-1237	56	VdD	[C TYPE]	1664	
3	NC	[C TYPE]	-3836		57	IF	[C TYPE]	1784	
4	NC	[C TYPE]	-3555		58	Vss	[C TYPE]	1904	
5	A0	[C TYPE]	-3403		59	C86	[C TYPE]	2024	
6	WR	[C TYPE]	-3283		60	VdD	[C TYPE]	2145	
7	CS	[C TYPE]	-3163		61	RES	[C TYPE]	2265	
8	D7	[C TYPE]	-3043		62	VDD	[C TYPE]	2385	
9	D6	[C TYPE]	-2922		63	(FSA)	[C TYPE]	2505	
10	D5	[C TYPE]	-2802		64	(FSB)	[C TYPE]	2636	
11	D4	[C TYPE]	-2682		65	(FSC)	[C TYPE]	2767	
12	D3	[C TYPE]	-2562		66	(FSO)	[C TYPE]	2897	
13	D2	[C TYPE]	-2441		67	(FS1)	[C TYPE] $]$	3028	
14	D1	[C TYPE]	-2321		68	(FS2)	[C TYPE]	3159	
15	D0	[C TYPE]	-2201		69	(FS3)	[C TYPE] $]$	3289	
16	Vdd	[D TYPE]	-2089		70	VDD	[C TYPE] $]$	3420	
17	VdD	[D TYPE]	-1999		71	VdD	[C TYPE]	3550	
18	VDD	[D TYPE]	-1909		72	NC	[C TYPE]	3689	
19	Vss	[D TYPE]	-1820		73	NC	[C TYPE]	3794	
20	Vss	[D TYPE]	-1730		74	NC	[C TYPE]	3899	\checkmark
21	V5	[D TYPE]	-1641		75	NC	[B TYPE]	4191	-1250
22	V5	[D TYPE]	-1551		76	COMSA	[B TYPE]		-1098
23	V4	[D TYPE]	-1461		77	SEGSF	[B TYPE]		-978
24	V4	[D TYPE]	-1371		78	SEGSG	[B TYPE]		-858
25	V3	[D TYPE]	-1282		79	SEGSH	[B TYPE]		-737
26	V3	[D TYPE]	-1192		80	SEGSI	[B TYPE]		-617
27	V 2	[D TYPE]	-1102		81	SEGSJ	[B TYPE]		-497
28	V 2	[D TYPE]	-1013		82	COMS1	[B TYPE]		-394
29	V_{1}	[D TYPE]	-923		83	COM1	[B TYPE]		-305
30	V_{1}	[D TYPE]	-833		84	COM2	[B TYPE]		-215
31	Vo	[D TYPE]	-744		85	COM3	[${ }^{\text {B TYPE] }}$ T ${ }^{\text {P }}$		-125
32	Vo	[D TYPE]	-654		86	COM4	[B TYPE]		-36
33	VR	[D TYPE]	-564		87	COM5	[${ }^{\text {B TYPE] }}$]		54
34	VR	[D TYPE]	-474		88	COM6	[B TYPE]		144
35	Vout	[D TYPE]	-385		89	COM7	[B TYPE]		234
36	Vout	[D TYPE]	-295		90	COM8	[B TYPE]		323
37	CAP2-	[D TYPE]	-205		91	COM9	[B TYPE]		413
38	CAP2-	[D TYPE]	-116		92	COM10	[B TYPE]		503
39	CAP2+	[D TYPE]	-26		93	COM11	[B TYPE]		592
40	CAP2+	[D TYPE]	64		94	COM12	[B TYPE]		682
41	CAP1-	[D TYPE]	153		95	COM13	[B TYPE]		772
42	CAP1-	[D TYPE]	243		96	COM14	[B TYPE]		861
43	CAP1+	[D TYPE]	333		97	COM15	[B TYPE]		951
44	CAP1+	[D TYPE]	423		98	COM16	[B TYPE]		1041
45	Vss	[D TYPE]	512		99	COMS1	[B TYPE]		1131
46	Vss	[D TYPE]	602		100	NC	[B TYPE]		1251
47	Vss2	[D TYPE]	692		101	NC	[A TYPE]]	3915	1240
48	Vss2	[D TYPE]	781		102	NC	[A TYPE]	3810	
50	VDD	[D TYPE]	871		103	SEG1	[A TYPE]	3547	
51	VDD	[D TYPE]	1050		105	SEG3	[A TYPE]	3368	
52	CK	[C TYPE]	1183		106	SEG4	[A TYPE]	3278	
53	Vs1	[C TYPE]	1303		107	SEG5	[A TYPE]	3188	
54	Vss	[C TYPE]	1423	\checkmark	108	SEG6	[A TYPE]	3099	\checkmark

PAD			COORDINATES		PAD			COORDINATES	
No.	Name [BU	UMP TYPE]	X	Y	No.	Name [BU	UMP TYPE]	X	Y
109	SEG7	[A TYPE]	3009	1240	160	SEG58	[A TYPE]	-1566	1240
110	SEG8	[A TYPE]	2919		161	SEG59	[A TYPE]	-1655	
111	SEG9	[A TYPE]	2830		162	SEG60	[A TYPE]	-1745	
112	SEG10	[A TYPE]	2740		163	SEG61	[A TYPE]	-1835	
113	SEG11	[A TYPE]	2650		164	SEG62	[A TYPE]	-1924	
114	SEG12	[A TYPE]	2561		165	SEG63	[A TYPE]	-2014	
115	SEG13	[A TYPE]	2471		166	SEG64	[A TYPE]	-2104	
116	SEG14	[A TYPE]	2381		167	SEG65	[A TYPE]	-2194	
117	SEG15	[A TYPE]	2291		168	SEG66	[A TYPE]	-2283	
118	SEG16	[A TYPE]	2202		169	SEG67	[A TYPE]	-2373	
119	SEG17	[A TYPE]	2112		170	SEG68	[A TYPE]	-2463	
120	SEG18	[A TYPE]	2022		171	SEG69	[A TYPE]	-2552	
121	SEG19	[A TYPE]	1933		172	SEG70	[A TYPE]	-2642	
122	SEG20	[A TYPE]	1843		173	SEG71	[A TYPE]	-2732	
123	SEG21	[A TYPE]	1753		174	SEG72	[A TYPE]	-2821	
124	SEG22	[A TYPE]	1664		175	SEG73	[A TYPE]	-2911	
125	SEG23	[A TYPE]	1574		176	SEG74	[A TYPE]	-3001	
126	SEG24	[A TYPE]	1484		177	SEG75	[A TYPE]	-3091	
127	SEG25	[A TYPE]	1394		178	SEG76	[A TYPE]	-3180	
128	SEG26	[A TYPE]	1305		179	SEG77	[A TYPE]	-3270	
129	SEG27	[A TYPE]	1215		180	SEG78	[A TYPE]	-3360	
130	SEG28	[A TYPE]	1125		181	SEG79	[A TYPE]	-3449	
131	SEG29	[A TYPE]	1036		182	SEG80	[A TYPE]	-3539	
132	SEG30	[A TYPE]	946		183	NC	[A TYPE]	-3704	
133	SEG31	[A TYPE]	856		184	NC	[A TYPE]	-3810	
134	SEG32	[A TYPE]	767		185	NC	[A TYPE]	-3915	
135	SEG33	[A TYPE]	677		186	NC	[B TYPE]	-4191	1251
136	SEG34	[A TYPE]	587		187	COMS2	[B TYPE]		1131
137	SEG35	[A TYPE]	497		188	COM32	[B TYPE]		1041
138	SEG36	[A TYPE]	408		189	COM31	[B TYPE]		951
139	SEG37	[A TYPE]	318		190	COM30	[B TYPE]		861
140	SEG38	[A TYPE]	228		191	COM29	[B TYPE]		772
141	SEG39	[A TYPE]	139		192	COM28	[B TYPE]		682
142	SEG40	[A TYPE]	49		193	COM27	[B TYPE]		592
143	SEG41	[A TYPE]	-41		194	COM26	[B TYPE]		503
144	SEG42	[A TYPE]	-130		195	COM25	[B TYPE]		413
145	SEG43	[A TYPE]	-220		196	COM24	[B TYPE]		323
146	SEG44	[A TYPE]	-310		197	COM23	[B TYPE]		234
147	SEG45	[A TYPE]	-400		198	COM22	[B TYPE]		144
148	SEG46	[A TYPE]	-489		199	COM21	[B TYPE]		54
149	SEG47	[A TYPE]	-579		200	COM20	[B TYPE]		-36
150	SEG48	[A TYPE]	-669		201	COM19	[B TYPE]		-125
151	SEG49	[A TYPE]	-758		202	COM18	[B TYPE]		-215
152	SEG50	[A TYPE]	-848		203	COM17	[B TYPE]		-305
153	SEG51	[A TYPE]	-938		204	COMS2	[B TYPE]		-394
154	SEG52	[A TYPE]	-1027		205	SEGSA	[B TYPE]		-497
155	SEG53	[A TYPE]	-1117		206	SEGSB	[B TYPE]		-617
156	SEG54	[A TYPE]	-1207		207	SEGSC	[B TYPE]		-737
157	SEG55	[A TYPE]	-1297		208	SEGSD	[B TYPE]		-858
158	SEG56	[A TYPE]	-1386		209	SEGSE	[B TYPE]		-978
159	SEG57	[A TYPE]	-1476	\checkmark	210	COMSA	[B TYPE]	,	-1098

(FS*)
: This is a FUSE adjusting pin. Set it is the floating state.
$\overline{\mathrm{CK}}$ pin : Fix it to VDD when it is not used.
<Pad coordinates> SED1241***

PAD			COORDINATES		PAD			COORDINATES	
No.	Name [B	UMP TYPE]	X	Y	No.	Name [BU	JMP TYPE]	X	Y
1	NC	[B TYPE]	-4191	-1250	55	P/S	[C TYPE]	1543	-1237
2	NC	[C TYPE]	-3941	-1237	56	Vdd	[C TYPE]	1664	
3	NC	[C TYPE]	-3836		57	IF	[C TYPE]	1784	
4	NC	[C TYPE]	-3555		58	Vss	[C TYPE]	1904	
5	A0	[C TYPE]	-3403		59	C86	[C TYPE]	2024	
6	WR	[C TYPE]	-3283		60	Vdd	[C TYPE]	2145	
7	CS	[C TYPE]	-3163		61	RES	[C TYPE]	2265	
8	D7	[C TYPE]	-3043		62	Vdd	[C TYPE]	2385	
9	D6	[C TYPE]	-2922		63	(FSA)	[C TYPE]	2505	
10	D5	[C TYPE]	-2802		64	(FSB)	[C TYPE]	2636	
11	D4	[C TYPE]	-2682		65	(FSC)	[C TYPE]	2767	
12	D3	[C TYPE]	-2562		66	(FSO)	[C TYPE]	2897	
13	D2	[C TYPE]	-2441		67	(FS1)	[C TYPE]	3028	
14	D1	[C TYPE]	-2321		68	(FS2)	[C TYPE]	3159	
15	D0	[C TYPE]	-2201		69	(FS3)	[C TYPE]	3289	
16	VDD	[D TYPE]	-2089		70	Vdd	[C TYPE]	3420	
17	VDD	[D TYPE]	-1999		71	VDD	[C TYPE]	3550	
18	VdD	[D TYPE]	-1909		72	NC	[C TYPE]	3689	
19	Vss	[D TYPE]	-1820		73	NC	[C TYPE]	3794	
20	Vss	[D TYPE]	-1730		74	NC	[C TYPE]	3899	\checkmark
21	V5	[D TYPE]	-1641		75	NC	[B TYPE]	4191	-1250
22	V5	[D TYPE]	-1551		76	COMSA	[B TYPE]		-1098
23	V_{4}	[D TYPE]	-1461		77	SEGSF	[B TYPE]		-978
24	V4	[D TYPE]	-1371		78	SEGSG	[B TYPE]		-858
25	V3	[D TYPE]	-1282		79	SEGSH	[B TYPE]		-737
26	V_{3}	[D TYPE]	-1192		80	SEGSI	[B TYPE]		-617
27	V_{2}	[D TYPE]	-1102		81	SEGSJ	[B TYPE]		-497
28	V_{2}	[D TYPE]	-1013		82	COMS1	[B TYPE]		-394
29	V_{1}	[D TYPE]	-923		83	COM1	[B TYPE]		-305
30	V_{1}	[D TYPE]	-833		84	COM2	[B TYPE]		-215
31	Vo	[D TYPE]	-744		85	COM3	[B TYPE]		-125
32	Vo	[D TYPE]	-654		86	COM4	[B TYPE]		-36
33	VR	[D TYPE]	-564		87	COM5	[B TYPE]		54
34	VR	[D TYPE]	-474		88	COM6	[B TYPE]		144
35	Vout	[D TYPE]	-385		89	COM7	[B TYPE]		234
36	Vout	[D TYPE]	-295		90	COM8	[B TYPE]		323
37	CAP2-	[D TYPE]	-205		91	COM9	[B TYPE]		413
38	CAP2-	[D TYPE]	-116		92	COM10	[B TYPE]		503
39	CAP2+	[D TYPE]	-26		93	COM11	[B TYPE]		592
40	CAP2+	[D TYPE]	64		94	COM12	[B TYPE]		682
41	CAP1-	[D TYPE]	153		95	COM13	[B TYPE]		772
42	CAP1-	[D TYPE]	243		96	COM14	[B TYPE]		861
43	CAP1+	[D TYPE]	333		97	COM15	[B TYPE]		951
44	CAP1+	[D TYPE]	423		98	COM16	[B TYPE]		1041
45	Vss	[D TYPE]	512		99	COMS1	[B TYPE]		1131
46	Vss	[D TYPE]	602		100	NC	[B TYPE]	\checkmark	1251
47	Vss2	[D TYPE]	692		101	NC	[A TYPE]	3915	1240
48	Vss2	[D TYPE]	781		102	NC	[A TYPE]	3810	
49	VdD	[D TYPE]	871		103	SEG1	[A TYPE]	3547	
50	VDD	[D TYPE]	961		104	SEG2	[A TYPE]	3458	
51	VDD	[D TYPE]	1050		105	SEG3	[A TYPE]	3368	
52	CK	[C TYPE]	1183		106	SEG4	[A TYPE]	3278	
53	VS1	[C TYPE]	1303		107	SEG5	[A TYPE]	3188	
54	Vss	[C TYPE]	1423	\checkmark	108	SEG6	[A TYPE]	3099	\checkmark

PAD			COORDINATES		PAD			COORDINATES	
No.	Name [B	UMP TYPE]	X	Y	No.	Name [BU	UMP TYPE]	X	Y
109	SEG7	[A TYPE]	3009	1240	160	SEG58	[A TYPE]	-1566	1240
110	SEG8	[A TYPE]	2919		161	SEG59	[A TYPE]	-1655	
111	SEG9	[A TYPE]	2830		162	SEG60	[A TYPE]	-1745	
112	SEG10	[A TYPE]	2740		163	SEG61	[A TYPE]	-1835	
113	SEG11	[A TYPE]	2650		164	SEG62	[A TYPE]	-1924	
114	SEG12	[A TYPE]	2561		165	SEG63	[A TYPE]	-2014	
115	SEG13	[A TYPE]	2471		166	SEG64	[A TYPE]	-2104	
116	SEG14	[A TYPE]	2381		167	SEG65	[A TYPE]	-2194	
117	SEG15	[A TYPE]	2291		168	SEG66	[A TYPE]	-2283	
118	SEG16	[A TYPE]	2202		169	SEG67	[A TYPE]	-2373	
119	SEG17	[A TYPE]	2112		170	SEG68	[A TYPE]	-2463	
120	SEG18	[A TYPE]	2022		171	SEG69	[A TYPE]	-2552	
121	SEG19	[A TYPE]	1933		172	SEG70	[A TYPE]	-2642	
122	SEG20	[A TYPE]	1843		173	SEG71	[A TYPE]	-2732	
123	SEG21	[A TYPE]	1753		174	SEG72	[A TYPE]	-2821	
124	SEG22	[A TYPE]	1664		175	SEG73	[A TYPE]	-2911	
125	SEG23	[A TYPE]	1574		176	SEG74	[A TYPE]	-3001	
126	SEG24	[A TYPE]	1484		177	SEG75	[A TYPE]	-3091	
127	SEG25	[A TYPE]	1394		178	SEG76	[A TYPE]	-3180	
128	SEG26	[A TYPE]	1305		179	SEG77	[A TYPE]	-3270	
129	SEG27	[A TYPE]	1215		180	SEG78	[A TYPE]	-3360	
130	SEG28	[A TYPE]	1125		181	SEG79	[A TYPE]	-3449	
131	SEG29	[A TYPE]	1036		182	SEG80	[A TYPE]	-3539	
132	SEG30	[A TYPE]	946		183	NC	[A TYPE]	-3704	
133	SEG31	[A TYPE]	856		184	NC	[A TYPE]	-3810	
134	SEG32	[A TYPE]	767		185	NC	[A TYPE]	-3915	
135	SEG33	[A TYPE]	677		186	NC	[B TYPE]	-4191	1251
136	SEG34	[A TYPE]	587		187	COMS2	[B TYPE]		1131
137	SEG35	[A TYPE]	497		188	*COM32	[B TYPE]		1041
138	SEG36	[A TYPE]	408		189	*COM31	[B TYPE]		951
139	SEG37	[A TYPE]	318		190	*COM30	[B TYPE]		861
140	SEG38	[A TYPE]	228		191	*COM29	[B TYPE]		772
141	SEG39	[A TYPE]	139		192	*COM28	[B TYPE]		682
142	SEG40	[A TYPE]	49		193	*COM27	[B TYPE]		592
143	SEG41	[A TYPE]	-41		194	*COM26	[B TYPE]		503
144	SEG42	[A TYPE]	-130		195	*COM25	[B TYPE]		413
145	SEG43	[A TYPE]	-220		196	*COM24	[B TYPE]		323
146	SEG44	[A TYPE]	-310		197	*COM23	[B TYPE]		234
147	SEG45	[A TYPE]	-400		198	*COM22	[B TYPE]		144
148	SEG46	[A TYPE]	-489		199	*COM21	[B TYPE]		54
149	SEG47	[A TYPE]	-579		200	*COM20	[B TYPE]		-36
150	SEG48	[A TYPE]	-669		201	*COM19	[B TYPE]		-125
151	SEG49	[A TYPE]	-758		202	*COM18	[B TYPE]		-215
152	SEG50	[A TYPE]	-848		203	*COM17	[B TYPE]		-305
153	SEG51	[A TYPE]	-938		204	COMS2	[B TYPE]		-394
154	SEG52	[A TYPE]	-1027		205	SEGSA	[B TYPE]		-497
155	SEG53	[A TYPE]	-1117		206	SEGSB	[B TYPE]		-617
156	SEG54	[A TYPE]	-1207		207	SEGSC	[B TYPE]		-737
157	SEG55	[A TYPE]	-1297		208	SEGSD	[${ }^{\text {B TYPE] }}$		-858
158	SEG56	[A TYPE]	-1386		209	SEGSE	[B TYPE]		-978
159	SEG57	[A TYPE]	-1476	\checkmark	210	COMSA	[B TYPE]	\checkmark	-1098

(FS*) : This is a FUSE adjusting pin. Set it in the floating state.
CK pin : Fix it to VDD when it is not used.
*: Don't connect COM17 to COM32.
<Pad coordinates> SED1242***

PAD			COORDINATES		PAD			COORDINATES	
No.	Name [B	UMP TYPE]	X	Y	No.	Name [BU	UMP TYPE]	X	Y
1	NC	[B TYPE]	-4191	-1250	55	P/S	[C TYPE]	1543	-1237
2	NC	[C TYPE]	-3941	-1237	56	VdD	[C TYPE]	1664	
3	NC	[C TYPE]	-3836		57	IF	[C TYPE]	1784	
4	NC	[C TYPE]	-3555		58	Vss	[C TYPE]	1904	
5	A0	[C TYPE]	-3403		59	C86	[C TYPE]	2024	
6	WR	[C TYPE]	-3283		60	Vdd	[C TYPE]	2145	
7	CS	[C TYPE]	-3163		61	RES	[C TYPE]	2265	
8	D7	[C TYPE]	-3043		62	VDD	[C TYPE]	2385	
9	D6	[C TYPE]	-2922		63	(FSA)	[C TYPE]	2505	
10	D5	[C TYPE]	-2802		64	(FSB)	[C TYPE]	2636	
11	D4	[C TYPE]	-2682		65	(FSC)	[C TYPE]	2767	
12	D3	[C TYPE]	-2562		66	(FSO)	[C TYPE]	2897	
13	D2	[C TYPE]	-2441		67	(FS1)	[C TYPE]	3028	
14	D1	[C TYPE]	-2321		68	(FS2)	[C TYPE] $]$	3159	
15	D0	[C TYPE]	-2201		69	(FS3)	[C TYPE] $]$	3289	
16	VDD	[D TYPE]	-2089		70	VDD	[C TYPE]	3420	
17	VDD	[D TYPE]	-1999		71	VdD	[C TYPE]	3550	
18	VdD	[D TYPE]	-1909		72	NC	[C TYPE]	3689	
19	Vss	[D TYPE]	-1820		73	NC	[C TYPE]	3794	
20	Vss	[D TYPE]	-1730		74	NC	[C TYPE]	3899	\checkmark
21	V5	[D TYPE]	-1641		75	NC	[B TYPE]	4191	-1250
22	V5	[D TYPE]	-1551		76	COMSA	[B TYPE]		-1098
23	V4	[D TYPE]	-1461		77	SEGSF	[B TYPE]		-978
24	V_{4}	[D TYPE]	-1371		78	SEGSG	[B TYPE]		-858
25	V3	[D TYPE]	-1282		79	SEGSH	[B TYPE]		-737
26	V3	[D TYPE]	-1192		80	SEGSI	[B TYPE]		-617
27	V_{2}	[D TYPE]	-1102		81	SEGSJ	[B TYPE]		-497
28	V 2	[D TYPE]	-1013		82	COMS1	[B TYPE]		-394
29	V_{1}	[D TYPE]	-923		83	COM1	[B TYPE]		-305
30	V_{1}	[D TYPE]	-833		84	COM2	[B TYPE]		-215
31	Vo	[D TYPE]	-744		85	COM3	[${ }^{\text {B TYPE] }}$]		-125
32	Vo	[D TYPE]	-654		86	COM4	[B TYPE]		-36
33	VR	[D TYPE]	-564		87	COM5	[B TYPE]		54
34	VR	[D TYPE]	-474		88	COM6	[B TYPE]		144
35	Vout	[D TYPE]	-385		89	COM7	[B TYPE]		234
36	Vout	[D TYPE]	-295		90	COM8	[B TYPE]		323
37	CAP2-	[D TYPE]	-205		91	COM9	[B TYPE]		413
38	CAP2-	[D TYPE]	-116		92	COM10	[B TYPE]		503
39	CAP2+	[D TYPE]	-26		93	COM11	[B TYPE]		592
40	CAP2+	[D TYPE]	64		94	COM12	[B TYPE]		682
41	CAP1-	[D TYPE]	153		95	COM13	[B TYPE]]		772
42	CAP1-	[D TYPE]	243		96	COM14	[B TYPE]]		861
43	CAP1+	[D TYPE]	333		97	COM15	[B TYPE]]		951
44	CAP1+	[D TYPE]	423		98	COM16	[B TYPE]		1041
45	Vss	[D TYPE]	512		99	COMS1	[B TYPE]]		1131
46	Vss	[D TYPE]	602		100	NC	[B TYPE]		1251
47	Vss2	[D TYPE]	692		101	NC	[A TYPE]	3915	1240
48	Vss2	[D TYPE]	781		102	NC	[A TYPE]	3810	
50	VDD	[D TYPE]	961		104	SEG2	[A TYPE]	3458	
51	VDD	[D TYPE]	1050		105	SEG3	[A TYPE]	3368	
52	CK	[C TYPE]	1183		106	SEG4	[A TYPE]	3278	
53	VS1	[C TYPE]	1303		107	SEG5	[A TYPE]	3188	
54	Vss	[C TYPE]	1423	\checkmark	108	SEG6	[A TYPE]	3099	\checkmark

PAD			COORDINATES		PAD			COORDINATES	
No.	Name [BU	UMP TYPE]	X	Y	No.	Name [BU	UMP TYPE]	X	Y
109	SEG7	[A TYPE]	3009	1240	160	SEG58	[A TYPE]	-1566	1240
110	SEG8	[A TYPE]	2919		161	SEG59	[A TYPE]	-1655	
111	SEG9	[A TYPE]	2830		162	SEG60	[A TYPE]	-1745	
112	SEG10	[A TYPE]	2740		163	SEG61	[A TYPE]	-1835	
113	SEG11	[A TYPE]	2650		164	SEG62	[A TYPE]	-1924	
114	SEG12	[A TYPE]	2561		165	SEG63	[A TYPE]	-2014	
115	SEG13	[A TYPE]	2471		166	SEG64	[A TYPE]	-2104	
116	SEG14	[A TYPE]	2381		167	SEG65	[A TYPE]	-2194	
117	SEG15	[A TYPE]	2291		168	SEG66	[A TYPE]	-2283	
118	SEG16	[A TYPE]	2202		169	SEG67	[A TYPE]	-2373	
119	SEG17	[A TYPE]	2112		170	SEG68	[A TYPE]	-2463	
120	SEG18	[A TYPE]	2022		171	SEG69	[A TYPE]	-2552	
121	SEG19	[A TYPE]	1933		172	SEG70	[A TYPE]	-2642	
122	SEG20	[A TYPE]	1843		173	SEG71	[A TYPE]	-2732	
123	SEG21	[A TYPE]	1753		174	SEG72	[A TYPE]	-2821	
124	SEG22	[A TYPE]	1664		175	SEG73	[A TYPE]	-2911	
125	SEG23	[A TYPE]	1574		176	SEG74	[A TYPE]	-3001	
126	SEG24	[A TYPE]	1484		177	SEG75	[A TYPE]	-3091	
127	SEG25	[A TYPE]	1394		178	SEG76	[A TYPE]	-3180	
128	SEG26	[A TYPE]	1305		179	SEG77	[A TYPE]	-3270	
129	SEG27	[A TYPE]	1215		180	SEG78	[A TYPE]	-3360	
130	SEG28	[A TYPE]	1125		181	SEG79	[A TYPE]	-3449	
131	SEG29	[A TYPE]	1036		182	SEG80	[A TYPE]	-3539	
132	SEG30	[A TYPE]	946		183	NC	[A TYPE]	-3704	
133	SEG31	[A TYPE]	856		184	NC	[A TYPE]	-3810	
134	SEG32	[A TYPE]	767		185	NC	[A TYPE]	-3915	
135	SEG33	[A TYPE]	677		186	NC	[B TYPE]	-4191	1251
136	SEG34	[A TYPE]	587		187	COMS2	[B TYPE]		1131
137	SEG35	[A TYPE]	497		188	*COM32	[B TYPE]		1041
138	SEG36	[A TYPE]	408		189	*COM31	[B TYPE]		951
139	SEG37	[A TYPE]	318		190	*COM30	[B TYPE]		861
140	SEG38	[A TYPE]	228		191	*COM29	[B TYPE]		772
141	SEG39	[A TYPE]	139		192	*COM28	[B TYPE]		682
142	SEG40	[A TYPE]	49		193	*COM27	[B TYPE]		592
143	SEG41	[A TYPE]	-41		194	*COM26	[B TYPE]		503
144	SEG42	[A TYPE]	-130		195	*COM25	[B TYPE]		413
145	SEG43	[A TYPE]	-220		196	*COM24	[B TYPE]		323
146	SEG44	[A TYPE]	-310		197	*COM23	[B TYPE]		234
147	SEG45	[A TYPE]	-400		198	*COM22	[B TYPE]		144
148	SEG46	[A TYPE]	-489		199	*COM21	[B TYPE]		54
149	SEG47	[A TYPE]	-579		200	*COM20	[B TYPE]		-36
151	SEG48	[A TYPE]	-669		201	${ }^{*}$ *OM19	[B TYPE]		-125
152	SEG50	[A TYPE]	-848		203	*COM17	[B TYPE]		-305
153	SEG51	[A TYPE]	-938		204	COMS2	[B TYPE]		-394
154	SEG52	[A TYPE]	-1027		205	SEGSA	[B TYPE]		-497
155	SEG53	[A TYPE]	-1117		206	SEGSB	[B TYPE]		-617
156	SEG54	[A TYPE]	-1207		207	SEGSC	[B TYPE]		-737
157	SEG55	[A TYPE]	-1297		208	SEGSD	[B TYPE]		-858
158	SEG56	[A TYPE]	-1386		209	SEGSE	[B TYPE]		-978
159	SEG57	[A TYPE]	-1476	\checkmark	210	COMSA	[B TYPE]		-1098

(FS*) : This is a FUSE adjusting pin. Set it in the floating state.
CK pin : Fix it to VDD when it is not used.
*: Don't connect COM17 to COM32.

DESCRIPTION OF PINS

Power Pins

Pin name	1/0	Description	Q'ty
Board potential		IC board is based on VDD potential. To lock the board potential with VdD.	
VDD	Power supply	Connected to the logic power supply. This is used in common with the MPU power pin Vcc.	6
Vss	Power supply	0 V power pin that is connected to system GND.	4
$\begin{aligned} & \mathrm{V}_{0}, \mathrm{~V}_{1} \\ & \mathrm{~V}_{2}, \mathrm{~V}_{3} \\ & \mathrm{~V}_{4}, \mathrm{~V}_{5} \end{aligned}$	Power supply	Multi-level power supply for liquid crystal drive. The voltage determined for the liquid crystal cell is applied by resistance-division or impedance conversion by operational amplifier. The potential is determined on VDD and the following relations must be observed. $\begin{aligned} & \text { VDD }=V_{0} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5} \\ & V_{\text {DD }} \geq V_{5} \geq \text { Vout } \\ & \text { VDD } \geq \text { Vss } \geq \text { VSS2 } \geq \text { Vout } \end{aligned}$ When the built-in power supply is ON, the following voltages are given to V 1 to V 4 by command selection.	6
Vs1	0	Supply voltage output pin for oscillating circuit. Don't connect a load to the outside.	1

LCD Power Circuit Pins

Pin name	I/O	Description	Q'ty
CAP1+	O	Boosting condenser positive side connecting pin. Condenser is connected with the CAP1- pin.	1
CAP1-	O	Boosting condenser negative side connecting pin. Condenser is connected with the CAP1+ pin.	1
CAP2+	O	Boosting condenser positive side connecting pin. Condenser is connected with the CAP2- pin.	1
CAP2-	O	A boosting condenser negative side connecting pin. Condenser is connected with the CAP2+ pin.	1
VouT	O	Output pin for boosting. Smoothing condenser is connected with VDD.	1
VR	I	Voltage adjusting pin. Voltage between VDD and V5 is given by resistance-division.	1
VsS2	I	Boosting power pin. The voltage between VDD and VSS2 is boosted by a specified multiple.	1

System Bus Connecting Pins

Liquid Crystal Drive Circuit Signals

Dynamic Drive Pins [SED1240]

Pin name	I/O	Description	Q'ty
COM1 to COM32	O	Common signal output pins (for characters)	32
COMS1, COMS2	O	Common signal output pins (for others than characters) COMS1, COMS2: Symbol output command output	4
SEG1 to SEG80	O	Segment signal output pins (for characters)	80

Dynamic Drive Pins [SED1241]

Pin name	I/O	Description	Q'ty
COM1 to COM24	O	Common signal output pins (for characters)	16
COMS1, COMS2	O	Common signal output pins (for others than characters) CMOS1, CMOS2: Symbol display common output	4
SEG1 to SEG80	O	Segment signal output pins (for characters)	80

Dynamic Drive Pins [SED1242]

Pin name	I/O	Description	Q'ty
COM1 to COM16	O	Common signal output pins (for characters) (Keep COM17 to COM32 unconnected.)	16
COMS1, COMS2	O	Common signal output pins (for others than characters) CMOS1, CMOS2: Symbol display common output	4
SEG1 to SEG80	O	Segment signal output pins (for characters)	80

Static Drive Pins

Pin name	I/O	Description	Q'ty
COMSA	O	Common signal output pin (for static icons)	2
SEGS A to J	O	Segment signal output pins (for static icons)	10

Note: For the electrode of the liquid crystal display panel connected to the static drive terminal, it is recommended use the pattern separated from the electrode connected to the dynamic drive terminal. If this pattern is too close, the liquid crystal and electrode may be deteriorated.

DESCRIPTION OF FUNCTIONS

MPU Interfaces

In the SED1240 series, an MPU type, interface bit length and interface method can be selected depending on pins IF, P/ S and C86.

Selection of MPU

In the SED1240 series, when parallel input is selected ($\mathrm{P} / \mathrm{S}=$ " H "), pin C 86 has an MPU selecting function.
When either " H " or "L" is selected as the polarity of pin C86, the 80 series MPU or 68 series MPU can be selected as shown in Table 1.
Selection of an interface bit length (8 bits, 4 bits) is performed by pin IF.
Table 1

MPU type	Pin C86 state	Polarity of $\overline{R E S}$ function input	MPU connection			
			$A 0$	$\overline{W R}$	$\overline{C S}$	D0 to D7
68 series	High level	Low level active	$A 0$	E	$\overline{C S}$	D0 to D7
			$A 0$	$\overline{W R}$	$\overline{C S}$	D0 to D7

Selection of interface type

In the SED1240 series, it is possible to select an 8-bit or 4-bit parallel interface or a serial interface that permits a data transfer through a serial input (SI). As the selecting method, set the polarity of pins of P/S and IF to "H" or "L".

Table 2

Interface	Interface	Selecting pin state		Pin state										
type	bit length	P/S	IF	$\overline{\text { CS }}$	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
Parallel	8 bits	H	H	$\overline{\mathrm{CS}}$	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
Parallel	4 bits	H	L	$\overline{\text { CS }}$	A0	WR	D7	D6	D5	D4		EN	H	
Serial	1 bit	L	H or L	$\overline{\text { CS }}$	A0	H or L	SI	SCL			EN	H		

Interface with 4-bit MPU

When data is transferred by a 4-bit interface ($\mathrm{IF}=0$), 8 -bit commands, data and addresses are divided into 2 parts for transfer. A timing example of the 80 series MPU is shown below.

Note: For continuous writing, perform it after securing a time exceeding the system cycle time (tcyc).

Serial interface ($\mathrm{P} / \mathrm{S}=$ " L ")

The serial interface consists of an 8-bit shift register and a 3-bit counter, and becomes ready to accept an SI input or SCL input in the chip selected state ($\overline{C S}=$ "L").
Unless any chip is selected, the shift register and the counter are reset to the initial state. (Refresh state)
Data is input in the order of D7, D6, ... D0 from the serial data input pin (SI) at the rise of the serial clock (SCL). At the rising edge of the 8th serial clock, the data is converted into parallel data.
Whether the serial data input (SI) is display data or a command is identified and judged by A0 input. When A0 = "H", the data becomes display data. When $\mathrm{A} 0=$ "L", the data becomes a command. The A0 input is read and identified at the rise of the $8 \times$ nth serial clock (SCL) after chip selection.

Fig. 1 shows a timing chart of the serial interface. In case of the SCL signal, extreme care should be taken about terminal reflection and external noise due to a wiring length. Accordingly, it is recommended to make an operation check.
It is also recommended to periodically refresh the each command write state to prevent a malfunction from being caused by noise.
$\overline{\mathrm{CS}}$

D7 (SI)

A0

Fig. 1 Serial Interface Input Timing

Identification of data bus signals

The SED1240 series identifies each data bus signal by a combination of A 0 and $\overline{\mathrm{WR}}(\mathrm{E})$ as shown in Table 3 .
Table 3

Common	68 series	80 series	Function
A 0	(E)	$\overline{W R}$	
1	1	0	Writes into the RAM and symbol register.
0	1	0	Writes into the internal register (commands)

Chip select

The SED1240 series has chip select pin $\overline{\mathrm{CS}}$. Only when $\overline{\mathrm{CS}}=$ "L", the MPU interface is enabled. In the other states than the chip select state, D0 to D7 and A0, $\overline{\mathrm{WR}}, \mathrm{SI}$, and SCL inputs are invalidated. When an serial input interface is selected, the shift register and the counter are reset. However, the RES input can be performed regardless of the $\overline{\mathrm{CS}}$ state.

Power Circuit

The power circuit built in the SED1240 series is a low power consumption power circuit that generates a voltage required for liquid crystal drive, and consists of a boosting circuit, voltage regulating circuit, and voltage follower. The power circuit capacity is set for a small-scale liquid crystal panel.
In the case of a liquid crystal panel with a large display capacity, the display quality may be remarkably degraded. In this case, an external power supply is required.
Functional selection is performed by power control commands.
Some parts of the external power supply and the internal power supply can be used together.
Table 4

	Boosting circuit	Voltage regulating circuit	Voltage follower	External voltage input	Boosting system pin
	\bigcirc	\bigcirc	\bigcirc	Vss2	USE
Note 1	\times	\bigcirc	\bigcirc	Vout, Vss2	OPEN
Note 2	\times	\times	\bigcirc	V5, Vss2	OPEN
Note 3	\times	\times	\times	$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}$	OPEN

Note 1: When the boosting circuit is turned off, set the boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) to OPEN so that liquid crystal drive voltages may be applied to the Vout pin from the outside.
Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, set the Vout pin and the boosting system pins to OPEN and connect the V5 pin to give liquid crystal drive voltages from the outside.
Note 3: When all the built-in power supplies are turned off, liquid crystal drive voltages $\mathrm{V}_{1}, \mathrm{~V} 2, \mathrm{~V} 3, \mathrm{~V} 4$, and V5 are supplied from the outside and set the CAP1+, CAP1-, Vss2 and Vout pins to OPEN.

Boosting circuit

The SED1240 series is provided with a boosting circuit for triple boosting and double boosting for the potential between VDD and VSS2.
For triple boosting, connect a capacitor between CAP1+ and CAP1-, between CAP2+ and CAP2-, and between Vdd and Vout, and the Vdd - Vss2 potential is tripleboosted to the negative side and output to the Vout pin. For double boosting, connect a capacitor between CAP1+ and CAP1 - and between VDD and Vout, set CAP2+ to OPEN, and connect CAP2- to Vout, and the VdD - Vss2

Potential relation of triple boosting voltages
potential is double-boosted to the negative side and output to the Vout pin.
Because the boosting circuit uses signals from the oscillator output, the internal oscillating circuit or the external clock must be in operation.
The relation of boosting voltages is shown below. Set the potential between the VDD and VSS2 to ensure that the Vout does not exceed the permissible operating voltage range of Vss - Vout (V5) when double or triple boosted.

Potential relation of double boosting voltages

* Set the VSS2 voltage range to ensure that Vout terminal voltage does not exceed the permissible operating voltage range of VSS - Vout and absolute maximum rating.

Voltage regulating circuit

The boosting voltage generated at Vout is output as a liquid crystal drive voltage of V5 through the voltage regulating circuit.
The SED1240 series is provided with a high-precision constant-voltage source, a 32 -step electronic volume function, and a V5 voltage regulating resistor. This permits constructing a high-precision voltage regulating
circuit with a small quantity of parts. The voltage regulating circuit outputs VEV and has a temperature gradient of about -0.04%.
As the V5 voltage regulating resistor, a built-in resistor or an external resistor can be selected by command as a matter of configuration.
[When using an external resistor (No use of V5 voltage regulating built-in resistor is set by command.)] The V5 voltage can be obtained from the following expression (1) by adjusting resistors Ra and Rb within the range of \mid V5 $|<|$ Vout \mid.

[R1, R2 and R3 setup example]

- $\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3=1.2 \mathrm{M} \Omega$ (Determined by the current value I05 flowing between VDD and V5. Supposing I05 $\leq 5 \mu \mathrm{~A}$)
- Minimum voltage of V5: -6 V (Determined by liquid crystal characteristic)
- Variable voltage range by R2: -4 to -6 V (Determined by the liquid crystal characteristic)
- When the electronic volume register is set to $(0,0,0$, $0,0)$, VEV $=2.0 \mathrm{~V}$ (TYP). Accordingly, each resistor value can be calculated by the above conditions and expression (1) as follows.

$$
\begin{equation*}
\mathrm{V}_{5}=\left(1+\frac{\mathrm{Rb}}{\mathrm{Ra}}\right) \cdot \mathrm{V}_{\mathrm{EV}} \tag{1}
\end{equation*}
$$

In this case, VEV is determined by the constant-voltage source in the IC and by setting the electronic volume. When the electronic volume value is (00000), VREG \leftrightharpoons 2.0 V , being constant.

For voltage adjustment of V5 output, connect a variable resistor among VR, VDD, and V5. For fine voltage adjustment of V5 output, it is recommended to combine fixed resistors R1 and R3 with variable resistor R2.

$$
\begin{aligned}
& \mathrm{R} 1=400 \mathrm{~K} \Omega \\
& \mathrm{R} 2=200 \mathrm{~K} \Omega \\
& \mathrm{R} 3=600 \mathrm{~K} \Omega
\end{aligned}
$$

Note 1: The input impedance of the Vr pin is high, so it is necessary to take a proper measure against noise for short wiring and shielding wiring.
[When using the V5 voltage regulating built-in resistor (Use of V5 voltage regulating built-in resistor is set by command.)] When the V5 voltage regulating built-in resistor and the electronic volume function are used, the liquid crystal supply voltage V5 can be controlled and the density of liquid crystal display can be controlled by commands only without adding any external resistor.
The V5 voltage can be obtained by the following expression (2) by adjusting resistors Ra and Rb within the range of \mid V5 $|<|$ Vout \mid.

$$
\begin{equation*}
\mathrm{V}_{5}=\left(1+\frac{\mathrm{Rb}}{\mathrm{Ra}}\right) \cdot \mathrm{V}_{\mathrm{EV}} \tag{2}
\end{equation*}
$$

In this case, VEV is determined by the constant-voltage source within the IC and by setting the electronic volume. When the electronic volume value is (00000), VREG $\leftrightharpoons 2.0 \mathrm{~V}$, being constant.

The voltage range of the V5 output can be adjusted by changing the built-in resistor ratio $(1+\mathrm{Rb} / \mathrm{Ra})$ by command. Reference values are shown in Table 5 and Fig. 2.

Table $5 \quad \mathrm{~V}_{5}$ voltage regulating built-in resistor ratio

Command		$(1+\mathrm{Rb} / \mathrm{Ra})$
IR1	IR0	
0	0	2.81
0	1	3.27
1	0	3.72
1	1	4.21

V5 voltage by V5 voltage regulating built-in resistor ratio set value and electronic volume resistor value (reference value)
[Fig. 2]

set values (reference values)

Fig. 2

- Voltage regulating circuit using the electronic volume function
When the electronic volume function is used, the liquid crystal drive voltage V5 can be controlled by the command to adjust the density of liquid crystal display. Regarding this method, set 5-bit data in the electronic
volume register, and the liquid crystal drive voltage V5 can take one of 32 states of voltage value.
When the electronic volume function is used, the voltage regulating circuit must be turned on by the power control command.
[Constant setup example when using the electronic volume function]

$$
\mathrm{V}_{5}=\left(1+\frac{\mathrm{Rb}}{\mathrm{Ra}}\right) \times \mathrm{V}_{\mathrm{EV}}
$$

However: VEV $=$ VREG $-\alpha$

$$
\alpha=\text { VREG } / 150
$$

Table 6

No.	Electronic volume register	α	V5
0	$(0,0,0,0,0)$	0	Large
1	$(0,0,0,0,1)$	1α	\vdots
2	$(0,0,0,1,0)$	2α	\vdots
3	$(0,0,0,1,1)$	3α	\vdots
\bullet	\bullet	\bullet	\vdots
30	$(1,1,1,1,0)$	$\mathrm{n}-1 \alpha$	\vdots
31	$(1,1,1,1,1)$	$n \alpha$	Small

When the electronic volume function is not used, set the electronic volume register to $(0,0,0,0,0)$.

Liquid crystal voltage generating circuit

The V5 potential is resistance-divided by the built-in resistor of the IC or external resistors Ra and Rb , generating potentials $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, and V_{4} required for liquid crystal drive. Furthermore, potentials V1, V2, V3, and V 4 are impedance-converted by the voltage follower and supplied to the liquid crystal drive circuit.

Regarding the liquid crystal drive voltage, the $1 / 5$ bias or $1 / 4$ bias can be selected by command. For liquid crystal power pins, capacitors C2 for voltage stabilization must be connected to pins V1 to V5 externally.
A reference circuit example of each case is shown below.
(1) Using all of the boosting circuit, power regulating circuit, and voltage follower
[When using a V_{5} voltage regulating built-in resistor] (Example of Vss2 = Vss, triple boosting)

(Example of Vss2 $=$ Vss, double boosting)

[When using no V_{5} voltage regulating built-in resistor]
(Example of Vss2 = Vss, triple boosting)

(Example of Vss2 $=$ Vss, double boosting)

Reference set values: $\mathrm{C} 1: 0.47$ to $4.7 \mu \mathrm{~F}$ It is recommended to set optimum values suitable for the panel size in C_{2} : 0.1 to $4.7 \mu \mathrm{~F}$ capacitors C_{1} and C_{2} while watching the liquid crystal display and drive waveforms.
(2) Using only the voltage regulating circuit and the voltage follower.
[When using a V_{5} voltage regulating built-in resistor] (Example of Vss2 $=$ Vss)

(Example of Vss2 $=$ Vss)

[When using no V_{5} voltage regulating built-in resistor]
(Example of Vss2 = Vss)

(Example of Vss2 $=\mathrm{Vss}$)

Reference set values: $\mathrm{C} 1: 0.47$ to $4.7 \mu \mathrm{~F}$ It is recommended to set optimum values suitable for the panel size in
C_{2} : 0.1 to $4.7 \mu \mathrm{~F}$ capacitors C_{1} and C_{2} while watching the liquid crystal display and drive waveforms.
*1 Because the input impedance of the VR pin is high, use a short wire and a shielding wire.
*2 Determine C1 and C2 values depending on the size of the LCD panel to be driven. Set proper values that permit stabilizing the liquid crystal drive voltages.
[Setting example] - Turn on the voltage regulating circuit and the voltage follower and give a voltage to Vout from the outside.

- Display a LCD heavy load pattern like horizontal stripes and determine a C 2 value so that the liquid crystal drive voltages (V_{1} to V 5) may be stabilized. However, it is necessary to set the same capacity value in C_{2} in every case.
- Next, turn on the built-in power supply and determine a C1 value.

High power mode

The power circuit built-in the SED1240 series is a low power consumption type. (when the high power mode is OFF)
Accordingly, in the case of a large load liquid crystal or panel, the display quality may be degraded. In this case, the display quality can be improved by entering $\mathrm{HPM}=$ ' 1 ' by command. Before determining whether or not to use this mode, it is recommended to make a display check with a real machine.
In case the display quality cannot be improved satisfactorily though the high power mode is set, a liquid crystal drive power must be supplied from the outside.

Low Power Consumption Mode

The SED1240 series is provided with the standby mode/ sleep mode to attain low power consumption in the standby status of the unit.

Standby mode
The standby mode is turned on and off by the power save command and display off/booster circuit off command. Only static icons can be displayed.

1. Liquid crystal display output COM1 to COM32, COMS1, COMS2: VDD level SEG1 to SEG80: VDD level SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Can be caused to come on by static drive.
Control the static icon display by SEGSA, B, C, D, E, F, G, H, I, J, COMSA by the static icon RAM.
2. Contents of DDRAM, CGRAM, and symbol register The written contents are kept in memory regardless of the ON/OFF status of the standby mode.
3. The operation mode remains in the status provided before execution of the standby mode. The internal circuit for dynamic display output is stopped.
4. Oscillating circuit

For static display, the oscillating circuit must be ON.

- Sleep mode

Turn off the power circuit and the oscillating circuit, set ' 0 ' in all the data of the static icon register, and execute the power save command.
Then, the sleep mode is set and the current consumption can be reduced to a value close to the static current.

1. Liquid crystal display output COM1 to COM32, COMS1, COMS2: VDD level SEG1 to SEG80, SEGS1, 2, 4, 5: VDD level SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Set ' 0 ' in all the data of the static icon register and blink ON/ OFF (for static icons).
2. Contents of SSRAM, CGRAM and symbol register The written contents can be kept in memory regardless of the ON/OFF status of the sleep mode.
3. The operation mode remains in the status provided before execution of the sleep mode. All the internal circuits are stopped.
4. Power circuit and oscillating circuit Turn off the built-in power supply and oscillating circuit by the power save command and the power control command.

* Caution: If the oscillating circuit is stopped with the static icon register data and blinking kept off, previous display will remain on the icon. To avoid this, be sure to turn off the data and blinking before stopping the oscillating circuit.

Reset Circuit

When the $\overline{\mathrm{RES}}$ input becomes active, this LSI will be put into the initial setup status. Resetting is performed at the 'L' level of the $\overline{\mathrm{RES}}$ input signal.

- Initial setup status

1. Line scroll register LS1, $0=0$: Scroll amount 0 line
2. Line blink control

LB4 $=0$: DDRAM line 4 blink OFF
LB3 $=0$: DDRAM line 3 blink OFF
LB2 $=0$: DDRAM line 2 blink OFF
LB1 $=0$: DDRAM line 1 blink OFF

3. Vertical double-size display register DD4 $=0 \quad:$ Line 4 is displayed in standard form. $\mathrm{DD} 3=0 \quad:$ Line 3 is displayed in standard form. $\mathrm{DD} 2=0 \quad:$ Line 2 is displayed in standard form . $\mathrm{DD} 1=0 \quad:$ Line 1 is displayed in standard form.
4. Display ON/OFF register
$\mathrm{C}=0 \quad$: Cursor OFF
$\mathrm{B}=0 \quad$: Blink OFF
$\mathrm{D}=0 \quad$: Display OFF
$\mathrm{RE}=0 \quad$: Extended register OFF
5. Power save register

$\mathrm{O}=0$: Oscillating circuit OFF
$\mathrm{PS}=0$: Power save OFF

6. Power control register
$\mathrm{HPM}=0 \quad$: High power mode OFF
$\mathrm{VC}=0 \quad$: Voltage regulating circuit OFF
$\mathrm{VF}=0 \quad$: Voltage follower OFF
$\mathrm{P}=0 \quad$: Boosting circuit OFF
$\operatorname{IRS}=1 \quad:$ For built-in resistor
BAS $=0 \quad: 1 / 5$ bias
IR1, $0=00: \mathrm{Rb} / \mathrm{Ra}=$ small
7. System set register
$\mathrm{CG}=0 \quad$: CGRAM not used
CS $=0 \quad$: Left shift
$\mathrm{SS}=0 \quad$: Normal display
R1, $0=0 \quad$: Standard ROM + OPTION ROM1
8. Electronic volume ($0,0,0,0,0$)
9. Static icon ON/OFF control $($ SEGSA, B, C, D, E, F, G, H, I, J) $=$ ($0,0,0,0,0,0,0,0,0,0$): Display OFF
10. Static icon blink control
$($ SEGSA, B, C, D, E, F, G, H, I, J) $=$ ($0,0,0,0,0,0,0,0,0,0$): Blink OFF
As seen in MPU Interface, the RES pin inputs data at the same timing as MPU resetting and performs initialization concurrently with the MPU. However, if this pin is put into the high impedance for a certain period after the MPU bus and ports are reset, perform a reset input after the input to the SED1240 series is definitively set.
For the reset signal, it is necessary to input ' 0 ' level
pulses at least for $10 \mu \mathrm{~s}$ as described in DC Characteristics. The ordinary operation will be started in $1 \mu \mathrm{~s}$ or more after the rising edge of the RES signal. When the RES pin becomes active, each register will be cleared and set to the above setup status.
If initialization is not executed by the RES pin when the supply voltage is applied, a clear disable status may appear.
In case the built-in liquid crystal power circuit is not used, the $\overline{\mathrm{RES}}$ input must be active when the external liquid crystal power supply is turned on.

DESCRIPTION OF COMMANDS

Table 7 shows a command table. The SED 1240 series identifies each data/command by a combination of A0 and $\overline{\mathrm{WR}}(\mathrm{E})$.
An extended command can be selected by the RE bit in the command.
Interpreting and executing commands are performed only at the internal timing. This permits high-speed processing.

Overview of Commands

Table 7

Command type	Command name	RE	A0	WR
Display control instructions	Cursor Home	0	0	0
	Display ON/OFF Control	0/1	0	0
	Line Blink Control	0	0	0
	Line Scroll Control	1	0	0
	Static Icon Display Control	0	1	0
	Static Icon Display Blink Control	0	1	0
	Vertical Double-size Display Control	1	0	0
Power control	Power Save	0/1	0	0
	Power Control (1)	0	0	0
	Power Control (2)	1	0	0
	Electronic Volume Control	0	1	0
System set	System Set (1)	0	0	0
	System Set (2)	1	0	0
Address control instructions	DDRAM, Symbol Register	0	0	0
	CGRAM	1	0	0
Data input instruction	Data Write	0/1	1	0

The execution time of each instruction is determined by the internal processing time of the SED1240 series.

Accordingly, for executing an instruction, secure a time exceeding the cycle time (tcyc) and then execute the instruction.

Table 8 SED1240 Series Command Table

Command	Code											Function
	RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	
(8) RAM Data Write	0/1	1	0	DATA								Writes data into the DDRAM, CGRAM, symbol register RAM, static icon RAM or electronic volume RAM. This is determined by the address set instruction executed immediately before writing data.
(9) NOP	0/1	0	0	0	0	0	0	0	0	0	0	A command for NON-OPERATION. This also serves as a test mode clear command, so it is recommended to input it periodically.
(10) Test Mode	0/1	0	0	0	0	0	0	*	*	*	*	A command for IC chip test. Don't use this command.

Description of Command Functions

Cursor home

Function: Presets the address counter to 30 H . Only when the previous RAM access is made to the area of $\mathrm{RE}=0$ of the RAM map, the cursor is moved to digit 1 on line 1 if the cursor is displayed.
If line scroll is set, it is cleared to the scroll amount $=0$ line.

RE	A 0	WR	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
0	0	0	0	0	0	1	$*$	$*$	$*$	$*$

Line scroll control

Function: Controls the display scroll amount for each line.

RE	A0	$\overline{\mathrm{WR}}$	D 7	D6	D5	D 4	D 3	D 2	D 1	D 0
1	0	0	0	0	0	1	$*$	$*$	LS1	LS0

* : Don't Care

LS1	LS0	Function
0	0	Scroll amount 0 line
0	1	Scrolls 1 line upward. (display line 1 from DDRAM line 2)
1	0	Scrolls 2 lines upward. (display line 1 from DDRAM line 3)
1	1	Scrolls 3 lines upward. (display line 1 from DDRAM line 4)

SED1240 Series

- When 2-line scroll has been performed upward at the 4-line display

- When 2-line scroll has been performed upward at the 2-line display $[(\operatorname{LS} 1, L S 2)=(1,0)]$

Line blink display control

Function: Displays the specified line in back-and-while reverse form.
The specified line corresponds to the address line of the DDRAM.
(Not the display line)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	LB4	LB3	LB2	LB1 1

- Displays the specified line of the DDRAM in black-and-white form by setting LB4 to LB1.

LB4 $\quad=0 \quad$: Displays the data for line 4 of the DDRAM in standard form. (no blink)
[DDRAM 60H to 6 FH]
LB4 $=1$: Displays the data for line 4 of DDRAM in black-and-white reverse blink form.
[DDRAM 60H to 6FH]
LB3 $\quad=0 \quad$: Displays the data for line 3 of the DDRAM in standard form. (no blink)
[DDRAM 50H to 5 FH]

LB3 $=1 \quad$: Displays the data for line 3 of the DDRAM in black-and-white reverse blink form.
[DDRAM 50H to 5 FH]
LB2 $\quad=0 \quad$: Displays the data for line 2 of the DDRAM in standard form. (no blink)
[DDRAM 40H to 4FH]
LB2 $=1$: Displays the data for line 2 of the DDRAM in black-and-white reverse blink form.
[DDRAM 40H to 4FH]
LB1 $\quad=0 \quad$: Displays the data for line 1 of the DDRAM in standard form. (no blink)
[DDRAM 30H to 3FH]
LB1 $=1$: Displays the data for line 1 of the DDRAM in black-and-white reverse blink form.
[DDRAM 30H to 3FH]

- $\operatorname{fblink}=1$ to 2 Hz .
- Blinking is performed at the same frequency as cursor blink.
If blinking is caused to occur at the same time, the cursor position will be hard to know.

Vertical double-size display control

Function: Displays the specified line in vertical doublesize form.
The specified line corresponds to the address of the DDRAM.
(Not the display line)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	1	0	DD4	DD3	DD2	DD1

- Displays the specified line of the DDRAM in vertical double-size form by setting DD4 to DD1.

DD4 $\quad=0 \quad$: Displays the data for line 4 of the DDRAM in standard form. [DDRAM 60 H to 6 FH]
DD4 $\quad=1 \quad$: Displays the data for line 4 of the DDRAM in vertical doublesize form.
[DDRAM 60 H to 6 FH]

DD3 $\quad 0 \quad$: Displays the data for line 3 of the DDRAM in standard form. [DDRAM 50 H to 5 FH]
DD3 $=1$: Displays the data for line 3 of the DDRAM in vertical doublesize form. [DDRAM 50H to 5FH]
DD2 $=0 \quad$: Displays the data for line 2 of the DDRAM in standard form. [DDRAM 40 H to 4 FH]
DD2 $=1$: Displays the data for line 2 of the DDRAM in vertical doublesize form.
[DDRAM 40H to 3FH]
DD1 $\quad=0 \quad$: Displays the data for line 1 of the DDRAM in standard form. [DDRAM 30H to 3FH]
DD1 $=1 \quad$: Displays the data for line 1 of the DDRAM in vertical doublesize form.
[DDRAM 30H to 3FH]

- Example of vertical double-size display

An example of 4-line display will be cited for explanation.

- In the status(3), only the half of the vertical double-size display appears because vertical double-size display is specified for the DDRAM address corresponding to display line 4. Accordingly, when vertical double-size display is specified every other line for 2 lines, half-lack characters are displayed by line scroll.

[Vertical double-size display]

Display ON/OFF control

Function: Sets both display and cursor ON/OFF, and extended register access.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
$0 / 1$	0	0	0	0	1	1	C	B	RE	D

- Display ON/OFF is specified by setting D.

$$
\begin{array}{lll}
\mathrm{D} & =0 & : \text { Display ON } \\
\mathrm{D} & =1 & : \text { Display ON }
\end{array}
$$

- Character blink ON/OFF at the cursor position is specified by setting B. However, when the cursor is OFF, this bit is invalidated.
$\begin{array}{lll}\text { B } & =0 & : \text { Cursor blink OFF } \\ \text { B } & =1 & : \text { Cursor blink ON }\end{array}$
- Cursor ON/OFF is specified by setting C.
C $\quad=0 \quad$: No display of cursor
C $\quad=1 \quad$: Display of cursor
- Example of cursor display

$$
\begin{equation*}
(C, B)=(0,0) \tag{1,0}
\end{equation*}
$$

$(1,1)$

f Blink
$\square \square \square \square \square$

The cursor display position is indicated by the address counter. Accordingly, when moving the cursor, change the address counter value by the RAM address set command or the auto increment by the RAM data write command.
To display the under-bar cursor when character data (CGRAM) at the cursor position, the position corresponding to the cursor position will be displayed in black-and-white reverse form.
If the address counter is set to the symbol register position at $(C, B)=(1,1)$, symbols can be caused to blink selectively (every 5 dots because symbols correspond to characters).

- Extended register access is specified by setting RE.

$$
\begin{array}{lll}
\text { RE } & =0 & : \text { Extended register OFF } \\
\text { RE } & =1 & : \text { Extended register ON }
\end{array}
$$

- The relation between C / B register and cursor display is shown in the following table.

C	B	Cursor display
0	0	No display (fixed)
0	1	No display (fixed)
1	0	Display of under-bar cursor
1	1	Alternate display of display characters and black-and-white reversed display characters

Power control (1)

Function: Controls the operation of the built-in power circuit.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	1	HPM	VC	VF	P

* : Don't Care
- Boosting circuit ON/OFF is specified by setting P. For operating the boosting circuit, the oscillating circuit must be in operation.

$$
\begin{array}{lll}
\mathrm{P} & =0 & : \text { Boosting circuit OFF } \\
\mathrm{P} & =1 & \text { : Boosting circuit ON }
\end{array}
$$

- Voltage follower ON/OFF is specified by setting VF.

VF $\quad=0 \quad$: Voltage follower OFF
$\mathrm{VF} \quad=1 \quad$: Voltage follower ON

- Voltage regulating circuit ON/OFF is specified by setting VC.
$\mathrm{VC} \quad=0 \quad:$ Voltage regulating circuit OFF
VC $\quad=1 \quad$: Voltage regulating circuit ON.
- High power mode ON/OFF is specified by setting HPM.
$\begin{array}{ll}\text { HPM } & =0 \\ \text { HPM } & =1\end{array}$

Power control (2)

Function: Controls the operation of the built-in power circuit.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	1	IRS	BAS	IR1	IR0

- The relation of IR0 and option combinations is shown in the following table.

IR1	IR0	$(1+\mathrm{Rb} / \mathrm{Ra})$
0	0	Small
0	1	\downarrow
1	0	Large
1	1	

- Bias selection is performed by setting BAS.

$$
\begin{array}{lll}
\text { BAS } & =0 & : 1 / 5 \text { bias } \\
\text { BAS } & =1 & : 1 / 4 \text { bias }
\end{array}
$$

- Either built-in V5 voltage regulating resistor or external resistor (no use of built-in resistor) is selected by setting IRS.

IRS	$=0$	$:$ No use of built-in resistor
IRS	$=1$	$:$ Use of built-in resistor

System set (1)

Function: Selects an option ROM and sets the common shift direction and the use/no use of CGRAM.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	R1	R0	CS	CG

- The relation of R1 and R0 combinations is shown in the following figure.

R1	R0	ROM combination
0	0	Standard ROM (160 characters or 154 characters) + option ROM1 (96 characters)
0	1	Standard ROM (160 characters or 154 characters) + option ROM2 (96 characters)
1	0	Standard ROM (160 characters or 154 characters) + option ROM3 (96 characters)
1	1	Standard ROM (160 characters or 154 characters) + option ROM4 (96 characters)

- The COM shift direction is specified by setting CS.

| CS | $=0$ |
| :--- | :--- | :--- |
| CS | $=1 \quad$$:$COM left shift
 (COM1 \rightarrow COM32 \rightarrow
 COMS1 \rightarrow COMS2)
 $:$
 COM right shift
 (COM32 \rightarrow COM1 \rightarrow
 COMS1 \rightarrow COMS2) |

- The use/no use of CGRAM is specified by setting CG.

$$
\begin{array}{lll}
\text { CG } & =0 & : \text { No use of CGRAM } \\
\text { CG } & =1 & : \text { Use of CGRAM }
\end{array}
$$

System set (1)

Function: sets the normal/reverse display of SEG characters.
This function operates for each character.

RE	A0	$\overline{\mathrm{WR}}$	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
1	0	0	0	1	1	0	$*$	$*$	SS	$*$

* : Don't Care
- The normal/reverse display of SEG is specified by setting SS.

SS	$=0$	$:$ Normal display of SEG
SS	$=1$	

SS $\quad=1 \quad:$ Reverse display of SEG

- For the symbol register RAM output, only the normal display is available.
- Example of display (compared by the same mounting method)

RAM address set (1) [DDRAM, static icon RAM, electronic volume RAM]
Function: Sets the address for writing data into the DDRAM, static icon RAM (including blink control), and electronic volume RAM in the address counter. When the cursor appears, it is displayed at the display position corresponding to the DDRAM address set by this command. (When the static icon RAM or electronic volume RAM is specified, the cursor disappears on the display.)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	ADDRESS						

(1) The settable address is the address 00 H to 7 FH in D6 to D 0 .
(2) When writing data in the RAM, set the address for writing data by this command. Next, when data is written in succession, the address will be automatically incremented. $(00 \mathrm{H}$ to $7 \mathrm{FH} \rightarrow 00 \mathrm{H})$
(3) $\mathrm{RE}=0,09 \mathrm{H}$ is for testing. Be sure not to use it!

RAM address set (2) [CGRAM, symbol register RAM]

Function: Sets the address for writing data into the CGRAM or symbol register RAM in the address counter.
When the CGRAM address is set, the cursor will disappear on the display. When the symbol register RAM is set, the cursor moves to the corresponding symbol position, causing this symbol to blink selectively.
When the cursor home command is executed immediately after execution of this instruction (before execution of RAM Address Set (1)), the cursor will not be displayed. (Because the address is set at address 30 H of RE-1 of the RAM map.)

RE	A0	WR	D 7	D 6	D 5	D 4	D 3	D 2	D 1	D 0
1	0	0	1	ADDRESS						

(1) The settable address of the address of 00 H to 7 FH in D6 to D0.
(2) When writing data in the RAM, set the address for writing data by this command. Next, if data is written in succession, the address will be automatically incremented. (00 H to $7 \mathrm{FH} \rightarrow 00 \mathrm{H}$)
(3) $\mathrm{RE}=1,30 \mathrm{H}-5 \mathrm{FH}$ i8s set to No Use. It is not available.

SED1240 Series

<Example of Address Set>

Note: When making access to the RAM after a change of the RE bit, be sure to set the address. If not, the contents of the RAM will be abnormal on the display.
[SED1240 RAM map] (4-line 16-digit display)

[SED1240 Series RAM map] (2-line 16-digit display)

RE	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Low } \\ \text { High order } \\ \text { order } \end{array}$	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	Symbol register: COMS1, 2 For static icon: COMSA, SEGSA - J
0	OXH		S		IB					EV	TEST			Unu				
	1XH									sed								
	2XH									used								
	3XH								RA	M line								
	4XH								RA	M line								
	5XH								RA	M line								
	6XH								RA	M line								
	7XH								RA	M line								
1	OXH	CGROM (00H)								CGROM(01H)								
	1XH	CGROM (02H)								CGROM (03H)								
	2XH	CGROM (04H)								CGROM(05H)								
	3XH	Unused																
	4XH	Unused																
	5 XH	Unused																
	6XH	Symbol register																
	7XH	Symbol register																
SI :Static icon RAM SIB :Static icon blink control RAM EV :Electronic volume RAM TEST :Testing register. Don't use it.																		

[Display range of each master]
The following shows the display range for the DDRAM area when the vertical double size is unspecified and scroll amount is 0 line:

SED1240 (4 lines by 16 columns)	1st line on display 2nd line on display	$\mathrm{RE}=0$ $\mathrm{RE}=0$	30 H to 3 FH
	3rd line on display 4th line on display	$\mathrm{RE}=0$	50 H to 5 FH
$\mathrm{RE}=0$	60 H to 6 FH		
SED1241 (3 lines by 16 columns)	1st line on display 2nd line on display	$\mathrm{RE}=0$	30 HE to 3 FH
	3rd line on display	$\mathrm{RE}=0$	40 H to 4 FH
		50 H to 5 FH	
SED1242 (2 lines by 16 columns)	1st line on display 2nd line on display	$\mathrm{RE}=0$	30 H to 3 FH
		$\mathrm{RE}=0$	40 H to 4 FH

RAM data write

Function: Writes data in the RAM areas of the DDRAM, CGRAM, symbol register RAM, static icon RAM, and electronic volume RAM.
Before this command, be sure to execute the address set command.
After that, each time data is written, the address will be automatically incremented. (Regarding the RE bit, the contents set by the command will be kept in memory.)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
$0 / 1$	1	0	DATA							

(1) Data is written into the DDRAM, CGRAM, symbol register RAM, static icon RAM, or electronic volume RAM.
(2) The address counter is automatically incremented by 1 , so data can be written in succession. However, the address counter advances from 00 H to 7 FH to 00 H . Accordingly, when writing data into the CGRAM, take care not to write it at the addresses subsequent to 30 H .
<Data write example>
An example of writing one line of data into the DDRAM continuously is shown below.

Before executing instructions in succession, secure a time exceeding tcyc and then execute them.

NOP

Function: A no-operation command. No operation is performed functionally. However, because a test mode reset function exists inside, the test mode can be reset if the IC is put into this mode by an effect of noise.
It is recommended to add this command at each breakpoint of the program.

RE	A0	$\overline{\mathrm{WR}}$	D 7	D6	D5	D4	D3	D2	D1	D0
$0 / 1$	0	0	0	0	0	0	0	0	0	0

CHARACTER GENERATOR Character Generator ROM (CGROM)

The SED1240 series is provided with a character generator ROM consisting of up to 544 types of characters. Each character size is of a structure of 5×8 dots.
A character code table of the SED1240 series is shown in CGROM Table X to X . In this case, which of CGROM and CGRAM should be used for the 6 characters of 00 H to 05 H of the character code is specified by the system set command.

The CGROM of the SED1240 series is a mask ROM and is compatible with the user's own CGROM. Please ask our sales department for further information.
Regarding a changed product of CGROM, the product name is defined as follows:

Example: SED1240D $\frac{\mathrm{AB}}{\uparrow}$
Digits corresponding to CGROM pattern change

The following shows the standard font specified for SED1240 series:
SED1240DAB, SED1240T0A: JISS1 (Font A)
SED1240DBB, SED1240T0B : ASCII (Font B)
SED1240DGB, SED1240T0G: JISS2 (Font G)
SED1241DAB, SED1241T0A: JISS1 (Font A)
SED1241DBB, SED1241T0B : ASCII (Font B)
SED1241DGB, SED1241T0G: JISS2 (Font G)
SED1242DAB, SED1242T0A: JISS1 (Font A)
SED1242DBB, SED1242T0B : ASCII (Font B)
SED1242DGB, SED1242T0G: JISS2 (Font G)
[SED1240D0A CGROM Font]
Standard ROM Font

Lower 4 Bit of Code

OPTION ROM1 (when R1, R0 $=0,0$ is selected)
Lower 4 Bit of Code

OPTION ROM2 (when R1, R0 $=0,1$ is selected)

Lower 4 Bit of Code

OPTION ROM3 (when R1, R0 $=1,0$ is selected)
Lower 4 Bit of Code

OPTION ROM4 (R1, R0 $=\mathbf{1 , 1}$ is selected)

Lower 4 Bit of Code

[CGROM Font (ASCII: Font B)]
Standard ROM Font

Lower 4 Bit of Code

OPTION ROM1 (when R1, R0 $=0,0$ is selected)

Lower 4 Bit of Code

OPTION ROM2 (when R1, R0 $=0,1$ is selected)
Lower 4 Bit of Code

OPTION ROM3 (when R1, R0 $=1,0$ is selected)
Lower 4 Bit of Code

OPTION ROM4 ($\mathrm{R} 1, \mathrm{RO}=1,1$ is selected)

Lower 4 Bit of Code

[CGROM Font (JISS2: Font G)]
Standard ROM Font
Lower 4 Bit of Code

OPTION ROM1 (when R1, R0 $=0,0$ is selected)
Lower 4 Bit of Code

0 56

OPTION ROM2 (when R1, R0 $=0,1$ is selected)
Lower 4 Bit of Code

OPTION ROM3 (when R1, R0 $=1,0$ is selected)
Lower 4 Bit of Code

OPTION ROM4 ($\mathrm{R} 1, \mathrm{RO}=\mathbf{1 , 1}$ is selected)
Lower 4 Bit of Code

Character Generator RAM (CGRAM)

The SED1240 series is provided with a CGROM that permits the user to program character patterns so as to attain a character display with a high degree of freedom. When using the CGRAM, select Use of CGRAM by the system set command. The CGRAM capacity is 240 bits having a structure of 5×8 dots and optional 6 types of patterns can be registered.
The relation among CGRAM character patterns, CGRAM addresses, and character codes is shown below.

Character code	RAM Address (CGRAM selection: RE = 1)		CGRAM data (character pattern)								$\begin{array}{\|l} \hline \text { Character display } \\ \hline \text { SEG } \end{array}$
				D7						D0	
00H	(00 H to 07 H)	0	*	*	*	0	1	1	1	1	\square
02H	(10H to 17H)	1	*	*	*	1	0	0	0	0	$\square \square \square \square$
04H	(20H to 27H)	2	*	*	*	1	0	0	0	0	$\square \square \square \square \square$
		3	*	*	*	0	1	1	1	1	$\square \square$
		4	*	*	*	0	0	0	0	1	$\square \square \square \square \square$
		5	*	*	*	0	0	0	0	1	$\square \square \square \square \square$
		6	*	*	*	1	1	1	1	0	
		7	*	*	*	0	0	0	0	0	\square
01H	(08H to 0FH)	8	*	*	*	0	0	1	0	0	$\square \square \square \square \square$
03H	(18H to 1FH)	9	*	*	*	0	0	1	0	0	$\square \square \square \square \square$
05H	(28H to 2FH)	A	*	*	*	0	1	1	1	0	$\square \square \square \square \square$
		B	*	*	*	0	1	1	1	0	$\square \square \square \square \square$
		C	*	*	*	0	1	1	1	0	$\square \square \square \square \square$
		D	*	*	*	1	1	1	1	1	
		E	*	*	*	1	1	1	1	1	
		F	*	*	*	0	0	0	0	0	$\square \square \square \square \square$
				Unus			harac	Disp			

The character size of 5×8 can also be set. In this case, use the RAM of $* 7 \mathrm{H}, * \mathrm{FH}$ of the CGRAM address. However, when the under-bar cursor is used, the data of $* 7 \mathrm{H}, * \mathrm{FH}$ is displayed in reverse form.

SED1240 Series

Symbol Register RAM

The SED1240 series is provided with a symbol register RAM that permits setting each symbol so that symbols may be displayed individually on the screen.
The symbol register capacity is 160 bits in both SED1240, SED1241 and SED1242 series and up to 160 symbols can be displayed.
Each symbol can be blink-controlled in units of bit by using D7 and D6.
The relation among symbol register display patterns, RAM address and write data is shown by citing an example.
[SED1240 (4-line 16-digit display), SED1241 (2-line 16-digit display)]

Note 1: When a symbol is 1.5 times as large as other bits, it is recommended to divide it into COMS1 and COMS2 for driving.

D7 (BONF)	D6 (IORH)	Function
0	${ }^{*}$	No blink
1	0	D4 to D0 blink in black-and-white reverse form.
1	1	The bits of "1" out of D4 to D0 blink.

fBLINK : 1 to 2 Hz

Static Icon RAM

The SED1240 series can display static icons in the standby mode.
Each of 10 icons can be set in respect of ON/OFF and
blink by using the pins of COMSA to SEGSA to J. The relation between static icon functions and static icon RAM write data is shown below.

RAM address$[\mathrm{RE}=0]$	SI data	Display
		$[\square \cdot \cdots$ OFF $\square \cdot \cdots$ ON]
00H	$\begin{array}{\|lll:lll:l:l:l:l} & & & & & & & & : & \\ & & & & & & & & \\ * & * & * & 0 & 0 & 0 & 0 & 0 \\ * & * & * & 0 & 0 & 0 & 0 & 1 \\ * & * & * & 0 & 0 & 0 & 1 & 0 \\ \\ * & & & & & & & & & \\ * & * & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	
01H		

For static icons, blink ON/OFF control can be exerted independently for each pin.

RAM address$[\mathrm{RE}=0]$	ISB data VS pin								Function
	D7	D6	D5	D4	D3	D2	D1	D0	
02H	*	*	*	SEGSA	SEGSB	SEGSC	SEGSD	SEGSE	Blink
03H	*	*	*	SEGSF	SEGSG	SEGSH	SEGSI	SEGSJ	$0=\mathrm{OFF}$

The following table shows a static icon ON/OFF function and static icon blink control.

RAM address$[\mathrm{RE}=0]$	SI data	Display
	$\begin{array}{\|c:c:c:c:c:c:c} \hline \text { D7 D6 } & \mathrm{D} 5 & \mathrm{D} & \mathrm{D} & \mathrm{D} 2 & \mathrm{D} 1 & \mathrm{D} \\ \hline \end{array}$	$[\square \cdot \cdots$ OFF $\square \cdot \cdots$ ON]
00H	* 1 * $\begin{aligned} & * \\ & 1\end{aligned} 1: \begin{aligned} & \text { l }\end{aligned}$	SEGSA B C D E
02H	$\text { * } *: \begin{array}{ll:l:l:l:l} * & 0 & 1 & 0 & 1 & 0 \end{array}$	

fBLiNK: 1 to 2 Hz

<Cautions for static icon operation>

- Be sure to write static icon data when the oscillating circuit is on. If the data is written when the oscillating circuit is off (Sleep Mode), previous display may remain and instantaneous lighting may occur.
- To perform resetting on the RES terminal except at the time of turning on power, turn off the static icon and blinking in advance, then turn off the oscillating circuit. If resetting is performed when the static icon or blinking is on, instantaneous lighting may be caused by stopping of the oscillating circuit.

Electronic Volume RAM

The SED1240 series is provided with an electronic volume function that permits controlling the liquid crystal drive voltage V5 and adjusting the density of liquid crystal display. The electronic volume function can select one of 32 states of the liquid crystal drive voltage by writing 5-bit data into the electronic volume RAM.

When a V5 voltage regulating built-in resistor is used, this function can attain a wider adjustment if the resistor ratio set command is used together.
The relation between electronic volume set RAM addresses and write data is shown below.

* :Unused
$\alpha: \alpha=$ Vreg/150
Note :Address"09H"(RE=0)isusedfortest.Don'tuseit.

ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit
Supply voltage (1)		Vss	-7.0 to +0.3	V
Supply voltage (2)	Double boosting Triple boosting	Vss2	$\begin{aligned} & -7.0 \text { to }+0.3 \\ & -7.0 \text { to }+0.3 \\ & -6.0 \text { to }+0.3 \end{aligned}$	V
Supply voltage (2)		V5, Vout	-18.0 to +0.3	V
Supply voltage (3)		$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$	V5 to +0.3	V
Input voltage		Vin	Vss -0.3 to +0.3	V
Output voltage		Vo	Vss -0.3 to +0.3	V
Operating temperature		Topr	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	TCP	Tstr	-55 to +100	${ }^{\circ} \mathrm{C}$
	Bare chip		-65 to +125	

Notes: 1. All the voltage values are based on VDD $=0 \mathrm{~V}$.
2. The voltages of V_{1}, V_{2}, V_{3}, and V_{4} must always meet the condition of $V_{D D} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5}$ and the condition of VDD $\geq \mathrm{V} 5 \geq$ Vout, VdD \geq (Vss, Vss2) \geq Vout.
3. If the LSI is used exceeding the absolute maximum ratings, it may result in permanent destruction. It is desirable to use the LSI in the condition of electric characteristics at ordinary operation. If this condition is exceeded, a malfunction may be caused to the LSI, having a bad effect on its reliability.

Operating voltage range for Vss system (Vss and Vss2) and V5 system (V5)
Set the VSS2 to ensure that the Vout does not exceed the following operating voltage range:
It applies when an external power supply is used. When using an internal power supply, make sure to set Vss in such that Vout may not exceed the operating voltage range of V5 system given below.

DC CHARACTERISTICS

［Vss $=-5.5 \mathrm{~V}$ to $-1.8 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified］

Item		Symbol		Condition	min	typ	max	Unit	Applicable pin
Supply voltage（1）	Recommended operation	Vss		－	$\begin{array}{r} -3.6 \\ -5.5 \\ \hline \end{array}$	－	$\begin{aligned} & -2.4 \\ & -1.8 \\ & \hline \end{aligned}$	V	Vss＊1
Supply voltage（2）	Recommended operation	Vss2		－	$\begin{aligned} & -3.6 \\ & -5.5 \\ & \hline \end{aligned}$	－	$\begin{aligned} & \hline-2.4 \\ & -1.8 \\ & \hline \end{aligned}$	V	$\begin{array}{\|l} \hline \text { Vss2 } \\ * 2 * 9 \\ \hline \end{array}$
Supply voltage（3）	Recommended operation	V5	When $1 / 4$ bias used		－16．0	－	－5．0	V	V5＊2
			When $1 / 5$ bias used		－16．0	－	－4．5	V	
		V1，V2	－		0．6×V5	－	VDD	V	V1，V2
		V3，V4	－		V5	－	$0.4 \times \mathrm{V}_{5}$	V	V $3, \mathrm{~V} 4$
High－level input voltage（1）		VIHC	$\mathrm{Vss}=-2.4 \mathrm{~V}$ to -1.8 V		$0.1 \times \mathrm{Vss}$	－	VDD	V	＊3
Low－level input voltage（1）		VILC			Vss	－	$0.9 \times \mathrm{Vss}$	V	
High－level input voltage（2）		VIHC	$\mathrm{Vss}=-5.5 \mathrm{~V}$ to -2.4 V		$0.2 \times \mathrm{Vss}$	－	VDD	V	
Low－level input voltage（2）		VILC			Vss	－	$0.8 \times \mathrm{Vss}$	V	
Input leak current		lLI	VIN＝VDD or Vss		－1．0	－	1.0	$\mu \mathrm{A}$	＊3
Liquid crystal driver ON resistance		Rav	$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \Delta \mathrm{~V}=0.1 \mathrm{~V} \\ & \hline \end{aligned}$	V $\mathrm{V}^{\text {C }}$ V5＝－7．0V	－	20	40	K Ω	$\begin{aligned} & \text { COM,SEG } \\ & * 4 \end{aligned}$
Static current consumption		IDDQ		－	－	0.1	5.0	$\mu \mathrm{A}$	VDD
Dynamic current consumption	IDD	During display V_{5}		$\mathrm{V} 5=-6 \mathrm{~V}$ no load	－	－	80	$\mu \mathrm{A}$	VDD＊5
		At standby ${ }^{\text {a }}$（ ${ }^{\text {P }}$		Oscillation ON， power OF	－	－	20	$\mu \mathrm{A}$	VDD＊ 6
		At sleep $\begin{array}{l}\text { Oc } \\ \text { po }\end{array}$		Oscillation OF， power OF	－	－	5	$\mu \mathrm{A}$	VDD
		During access，fcyc＝200K－Z			－	－	500	$\mu \mathrm{A}$	VDD＊7
Input pin capacity		On	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	C $f=1 \mathrm{MHZ}$	－	5.0	8.0	pF	＊ 3

Item	Symbol	Condition	min	typ	max	Unit	Applicable pin
Frame frequency	frr	$\mathrm{Ta}=25^{\circ} \mathrm{C} \quad \mathrm{Vss}=3.0 \mathrm{~V}$	70	100	130	Hz	＊10
External clock frequency	fok	2－line display（SED1242）	－	28.8	－	KHz	＊10＊11
	fok	3－line display（S⿴囗十241）	－	41.6	－	KHz	＊10＊11
	fok	4－line display（ED1240）	－	54.4	－	KHz	＊10＊11

Item	Symbol	Condition	\min	typ	\max	Unit	Applicable pin
Minimum reset pulse width	tRW	-	10	-	-	$\mu \mathrm{s}$	${ }^{*} 8$
Reset start time	tRES	-	-	-	50	ns	${ }^{*} 8$

Dynamic system

Item		Symbol	Condition	min	typ	max	Unit	Applicable pin
	Input voltage	Vss2	Double boosting	－5．5	－	－1．8	V	Vss2
			Triple boosting	－5．5	－	－1．8		
	Boosting output voltage	Vour	Double boosting	－11．0	－	－	V	Var
			Triple boosting	－16．5	－	－		
	Voltage regulating circuit operating voltage	Vour	－	－16．5	－	－5．4	V	Vorr
	Voltage follower operating voltage	V5	－	－16．0	－	－4．5	V	V5＊12
	Reference voltage	VREG	$\mathrm{Ta}=25^{\circ} \mathrm{C}-0.05 \% /{ }^{\circ} \mathrm{C}$	－2．06	－2．0	－1．94	V	－

*1: The wide operating voltage range is guaranteed except the case where a sudden voltage change occurs during MPU access.
In the low-supply voltage data holding characteristic, it is applied in the sleep mode and MPU access cannot be guaranteed
*2: At triple boosting, take care about supply voltage VSS2 so that it may not exceed the V5 operating voltage range.
*3: D0 to D5, D6 (SCL), D7 (SI), A0, $\overline{\mathrm{RES}}, \overline{\mathrm{CS}}, \overline{\mathrm{WR}}(\mathrm{E})$, P/S, IF. C86. CK
*4: This is a resistance value when a voltage of 0.1 V is applied between output pins SEGn, SEGSn, COMn, and COMSn, and each power pin ($\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V} 4$). This is specified within the range of operating voltage (2).

RON $=0.1 \mathrm{~V} / \Delta \mathrm{I}$

($\Delta \mathrm{I}$: A current flowing when 0.1 V is applied between the power supply and the output)
*5: Applies under the following conditions:

- No access from MPU during all characters ' H ' display
- The built-in circuit and oscillating circuit are operating.
- CGRAM unused, $\mathrm{HPM}=0$ specified, Vss $=-3.0$
*6: Applies under the following conditions:
- Standby mode
- ALl the built-in power circuit off
- Display off
- Oscillating circuit on
*7: Indicates that fcyc is used for writing at all times. The current consumption during access is approximately proportional to the access frequency (fcyc).
*8: Specifies the $\overline{\mathrm{RES}}$ signal minimum pulse width. To perform resetting, it is necessary to input the pulse having a width of tRw or more. Original, the method for reset case 1 is used, but the method for reset case 2 can also be used if the reset start time condition of tres or less is satisfied.

* All timing are specified on the basis of 20% and 80% of Vss.

AC CHARACTERISTICS

System Bus Write Characteristics I (80 series MPU)

[Vss $=-5.5 \mathrm{~V}$ to $-4.5 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, $\overline{\text { CS }}$	tAH8	-	30	-	ns
Address setup time		tAW8	-	60	-	ns
System cycle time	WR	tcYC8	-	300	-	ns
Control pulse width (WR)		tcc	-	60	-	ns
Data setup time	D0 to D7	tDS8	-	60	-	ns
Data hold time		tDH8	-	50	-	ns

[Vss $=-4.5 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	tAH8	-	30	-	ns
Address setup time		tAW8	-	60	-	ns
System cycle time	WR	tcYC8	tcc	-	500	-
Cs						
Control pulse width (WR)		-	100	-	ns	
Data setup time	D0 to D7	tDS8	-	100	-	ns
Data hold time		tDH8	-	50	-	ns

[Vss $=-2.4 \mathrm{~V}$ to $-1.8 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	tAH8	-	30	-	ns
Address setup time		tAW8	-	60	-	ns
System cycle time	WR	tCYC8	-	1000	-	ns
Control pulse width (WR)		tcc	-	200	-	ns
Data setup time	D0 to D7	tDS8	-	200	-	ns
Data hold time		tDH8	-	50	-	ns

[^3]
System Bus Write Characteristics II (68 series MPU)

[Vss $=-5.5 \mathrm{~V}$ to $-4.5 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, CS	tCYC6	tAW6	-	300	-
Address setup time		ta				
Address hold time		tAH6		60	-	ns
Data setup time	D0 to D7	tDS6	-	30	-	ns
Data hold time		tDH6	-	60	-	ns
Enable H pulse width	E	tEWH	-	50	-	ns
Enable L pulse width	E	tEWL	-	60	-	ns

[Vss $=-4.5 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	AO, $\overline{\text { CS }}$	tCYC6	-	500	-	ns
Address setup time		tAW6		60	-	ns
Address hold time		tAH6		30	-	ns
Data setup time	D0 to D7	tDS6	-	100	-	ns
Data hold time		tDH6	-	50	-	ns
Enable H pulse width	E	tEWH	-	100	-	ns
Enable L pulse width	E	tEWL	-	100	-	ns

[VSS $=-2.4 \mathrm{~V}$ to $-1.8 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$ unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	AO, CS	tCYC6	-	1000	-	ns
Address setup time		tAW6		60	-	ns
Address hold time		tAH6		30	-	ns
Data setup time	D0 to D7	tDS6	-	200	-	ns
Data hold time		tDH6	-	50	-	ns
Enable H pulse width	E	tEWH	-	200	-	ns
Enable L pulse width	E	tEWL	-	200	-	ns

*1: tcyc6 indicates the cycle of the E signal in the $\overline{\mathrm{CS}}$ active state.
It is necessary to secure tcyc6 after $\overline{\mathrm{CS}}$ becomes active.
*2: For the rise and fall time of input signals, set 15 ns or less.
*3: Every timing is specified on 20% and 80% of Vss.
*4: The same timing is not required for A 0 and $\overline{\mathrm{CS}}$. Input signals so that A 0 and $\overline{\mathrm{CS}}$ may satisfy taw6 and taH6 respectively.

Serial Interface

[Vss $=-5.5 \mathrm{~V}$ to $-4.5 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tSCYC	-	700	-	ns
SCL "H" pulse width		tSHW	-	250	-	ns
SCL "L" pulse width		tSLW	-	250	-	ns
Address setup time	AO	tSAS	-	50	-	ns
Address hold time		tSAH	-	250	-	ns
Data setup time	SI	tSDS	-	50	-	ns
Data hold time		tSDH	-	50	-	ns
CS-SCL time	CS	tCSS	-	150	-	ns
		tcSH	-	500	-	ns

[Vss $=-4.5 \mathrm{~V}$ to $-2.4 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tsCYC	-	1000	-	ns
SCL "H" pulse width		tSHW	-	300	-	ns
SCL "L" pulse width		tSLW	-	300	-	ns
Address setup time	AO	tSAS	-	50	-	ns
Address hold time		tSAH	-	300	-	ns
Data setup time	SI	tSDS	-	50	-	ns
Data hold time		tSDH	-	50	-	ns
CS-SCL time	CS	tCss	-	-	ns	
		tcSH	-	700	-	ns

[Vss $=-2.4 \mathrm{~V}$ to $-1.8 \mathrm{~V}, \mathrm{Ta}=-30$ to $85^{\circ} \mathrm{C}$]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tSCYC	-	2000	-	ns
SCL "H" pulse width		tSHW	-	300	-	ns
SCL "L" pulse width		tSLW	-	300	-	ns
Address setup time	AO	tSAS	-	50	-	ns
Address hold time		tSAH	-	500	-	ns
Data setup time	SI	tSDS	-	50	-	ns
Data hold time		tSDH	-	50	-	ns
CS-SCL time	CS	tCSS	-	150	-	ns
		tCSH	-	900	-	ns

*1: For the rise and fall time of input signals, set 15 ns or less.
*2: Every timing is specified on 20% and 80% of Vss.
*3: To validate a command or data immediately before the rise of $\overline{\mathrm{CS}}$, tCSH must be satisfied at the latch timing of D0 data. If $\overline{\mathrm{CS}}$ is started at another data latch timing, the previous command or data will not be input.

MPU INTERFACE CONNECTION EXAMPLES (FOR REFERENCE)

The SED1240 series can be connected to the 80 series MPU or 68 series MPU. Furthermore, it can be operated with less signal lines if the serial interface is used.
When an MPU bus, port, etc. are put into high-impedance for a certain period by RESET, input RESET into this machine after the input to the SED1240 series becomes definitive.

80 Series MPU

68 Series MPU

Serial Interface

INTERFACE WITH LCD CELL (FOR REFERENCE)

[16 digits $\times 4$ line 5×8 dots + symbol]

[16 digits $\times 3$ line 5×8 dots]

[16 digits $\times 2$ line 5×8 dots]

LIQUID CRYSTAL DRIVE WAVEFORM (B WAVEFORM)

Example of Setting the Instructions (Reference)

(1) Initialization

This IC has no power-on reset function when power is turned on. Accordingly, the IC internal status is

indefinite when the power has been turned on. Be sure to initialize the system. If electric charge remains in the smoothing capacitor connected between the liquid crystal drive voltage output terminal (V1 to V5) and VDD terminal, such a trouble as temporary blackening will occur when power is turned on. To avoid such a trouble, follow the steps given below:

Note 0 : (0) is a NOP command. This command has a function to clear the test mode. After resetting, it is recommended to execute this command several times before starting input. It is also recommended to execute it on a periodic basis at a proper position of the insutruction.

Note 1: (7) denotes RAM initialization. Set the contents to be displayed in the beginning. For items not to be displayed (RAM clear), use the following steps:

- DDRAM - write 20H (character code).
- CGRAM - write 00H (data "0").
- Symbol register - write 00H (data "0").

The RAM data is unspecified at the time of $\overline{R E S}$ input (after power is turned on). If the data "0" is not written at this stage, unexpected display may occur to the unset position.

Note 2: Defined by the rising characteristics of the boosting circuit, power regulating circuit and voltage and follower circuit, time setting varies according to the external capacity. So be sure to make confirmation by external capacity, and set this time.

Note 3: The dynamic drive system display lamp is lit up by the display on/off command when it is on. The static icon lamp is lit by the static icon control command. So to light up the lamp simultaneously with start of display, execute the display on/off control command and static icon control within one frame.

Note 4: Static icon control must be operated when the oscillating circuit is on. (This is mandatory.)

Note 5: (0) to (8) must be performed when display is off.
(2-1) Setting the Standby mode

(3-1) Setting the Sleep mode

(2-1) Resetting the Standby mode

(3-1) Resetting the Sleep mode

(4) Power off sequence

Similar to the case of power on sequence, if this IC power is turned off when the built-in power is on, power supply to the built-in liquid crystal drive circuit may continue for a very little time, adversely affecting the liquid crystal panel display quality. To prevent this, strictly follow the power off sequence.

OPTIONS LIST

The SED 1240 series has the following options. Options are available exclusively for users. Please contact our Sales Department.

The following shows how to define the name of the product compatible with options:
(Example) SED124XXXX

Character Generator ROM (CGROM) Specifications

The SED1240 series is provided with a character generator ROM for up to 544 types of characters. Each character size is of a structure of 5×7 (8) dots.

This CGROM is designed as a masked ROM, and is compatible with the CGROM for exclusive use of the user. For the standard CGROM, see the Character Font Table.

TCP Specifications

The SED 1240 series is compatible with the TCP specifications exclusive to the user, in addition to our standard TCP. Please contact our Sales Department for information.

Example of TCP Arrangement

Note: The following does not specify the TCP external
REFERENCE
view.

SED1240TXX: COM1 to 16, (COM17 to 24) and [COM25 to 32] are used.

SED1278 LCD Controller/Drivers

Technical Manual

Contents

OVERVIEW 9-1
FEATURES 9-1
BLOCK DIAGRAM 9-2
PACKAGE OUTLINE 9-2
PINOUT 9-3
PIN DESCRIPTION 9-4
TERMINAL CONFIGURATION 9-5
INSTRUCTION DESCRIPTION 9-6
SPECIFICATIONS 9-10
OPERATION 9-16
THE CHARACTER GENERATOR 9-21
LCD INTERFACE 9-23
MPU INTERFACE 9-30
COMPARISON WITH HD44780 BY HITACHI 9-31
APPENDIX A: CHARACTER CODES AND FONTS 9-32
APPENDIX B: PIN CONSTRUCTION 9-38

OVERVIEW

The SED1278 is a dedicated character display controller/ driver which, when used with the SED1181F or the SED1681 segment drivres, is able to display up to 80 characters under 4- or 8 -bit MPU control.
The internal character generator (CG) ROM has an extended 240, 5×10 pixel, character set, plus CGRAM space for an additional eight user definable 5×8 pixel characters. These memory features combined with the rich set of control instructions offer the potential for a highly flexible character display system.
The SED1278 features a guaranteed minimum LCD drive voltage of 3 V making it suitable for use with low voltage LCD panels.

FEATURES

- Interface for 4- and 8-bit MPUs
- Display RAM - 80 bytes (80 characters)
- Character generator ROM - 240 characters
- 5×8 pixel font
- Character genrator RAM - 64 bytes
- 5×8 pixel font, 8 characters.
- 5×10 pixel font, 4 characters.
- Number of characters used

	Duty	SED1278F	SED1181FLA	No. of characters used
One-line display	$1 / 8$,	1	0	8 columns $\times 1$ line
	$1 / 11$	6	80 columns $\times 1$ line	
Two-line display	$1 / 16$	1	0	8 columns $\times 2$ lines

- Powerful display control instructions
- LCD driver outputs
- 40 segment driver outputs
- 16 common driver outputs
- Low LCD drive voltage - 3 V minimum (VDD-V5)
- Dual-frame AC drive
- On-chip power-on reset
- On-chip RC oscillator
- Single 5 V operation
- Chip (SED1278D) and 80-pin QFP (SED1278F) packages
(Compatible with HD 44780 and HD 66780 by Hitachi Limited)

The SED1278 is equivalent to the HD 44780 and HD 66780 by Hitachi Limited. Before use, make sure that there is no problem for practical use. It should be noted that this is not intended to guarantee enforcement of industrial property and other rights, or to grant license for the use of this product.

BLOCK DIAGRAM

PACKAGE OUTLINE

PINOUT

Pin		Pin		Pin		Pin	
Number	Name	Number	Name	Number	Name	Number	Name
1	SEG22	21	SEG2	41	DB2	61	COM15
2	SEG21	22	SEG1	42	DB3	62	COM16
3	SEG20	23	GND	43	DB4	63	SEG40
4	SEG19	24	OSC1	44	DB5	64	SEG39
5	SEG18	25	OSC2	45	DB6	65	SEG38
6	SEG17	26	V1	46	DB7	66	SEG37
7	SEG16	27	V2	47	COM1	67	SEG36
8	SEG15	28	V3	48	COM2	68	SEG35
9	SEG14	29	V4	49	COM3	69	SEG34
10	SEG13	30	V5	50	COM4	70	SEG33
11	SEG12	31	LP	51	COM5	71	SEG32
12	SEG11	32	XSCL	52	COM6	72	SEG31
13	SEG10	33	VDD	53	COM7	73	SEG30
14	SEG9	34	FR	54	COM8	74	SEG29
15	SEG8	35	DO	55	COM9	75	SEG28
16	SEG7	36	RS	56	COM10	76	SEG27
17	SEG6	37	R/W	57	COM11	77	SEG26
18	SEG5	38	E	58	COM12	78	SEG25
19	SEG4	39	DB0	59	COM13	79	SEG24
20	SEG3	40	DB1	60	COM14	80	SEG23

PIN DESCRIPTION

MPU Interface

RS \begin{tabular}{l}
Register select signal input. Selects

between the data and instruction registers

during CPU access.

RS $=0:$ Instruction register access cycle

R/W \quad| RS $=1:$ Data register access cycle |
| :--- |
| This input selects between SED1278 |
| register read and write cycles. |
| |
| RR/W $=0:$ Register write cycle |
| |
| R/W $=1:$ Register read cycle |
| Read/write execute signal input. |

\end{tabular}

DB0 to DB7 TTL level data input/output lines, for connection to the system MPU data bus.

TABLE 1 The Function of the E Signal

RS	R/W	E	Operation
0	0		Instruction write cycle Busy flag read cycle Address counter read cycle
0	1	1	DDRAM or CGRAM data write cycle
1	0	1	DDRAM or CGRAM data read cycle
1	1		

LCD Panel Interface

COM1 to COM16 Common driver outputs to the LCD panel.
SEG1 to SEG40 Segment driver outputs to the LCD panel.

OSC1

OSC2
If the internal RC oscillator is used to generate the LCD drive signals, the feedback resistor, Rf , is connected to this pin. If an external clock source is used, the clock is connected to this pin. If the internal RC oscillator is used to generate the LCD drive signals, the feedback resistor, Rf, is connected to this pin. If an external clock source is used, this pin is left open.

External Segment Driver Interface

LP Data latch pulse output for an external X-driver.
XSCL Data shift clock output for an external X-driver.
FR LCD AC-drive waveform for an external X-driver.
DO Display data output for an external X-driver.

TERMINAL CONFIGURATION

1. Input terminal configuration (1)

2. Input terminal configuration (2)

With pull-up MOS resistor

3. Output terminal configuration

4. Input/Output terminal configuration

INSTRUCTION DESCRIPTION

Instruction Summary

Instruction	Code										Description	Cycle Time (max.)
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Clear Display	0	0	0	0	0	0	0	0	0	1	Clears all display data and sets DDRAM address 0 in the address counter.	410 clocks
Return Home	0	0	0	0	0	0	0	0	1	*	Set DDRAM address 0 in the address counter. Also returns any shifted data to home. The contents of DDRAM remain unchanged.	410 clocks
Entry Mode Set	0	0	0	0	0	0	0	1	$1 / \bar{D}$	S	Specifies the direction in which the cursor moves and whether the display is to be shifted or not, when data is writen to or read from memory	10 clocks
Display ON/OFF	0	0	0	0	0	0	1	D	C	B	Sets all display on/off (D) cursor on/off (C), and character blinking in the cursor position (B).	10 clocks
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	*	*	Moves the cursor and shifts the display without changing the contents of DDRAM.	10 clocks
System Set	0	0	0	0	1	IF	N	F	*	*	Sets the interface data length (IF), number of characters to be displayed (N), and character font (F).	10 clocks
Set CGRAM Address	0	0	0	1	Acg						Set CGRAM addresses, followed by transfer of CGRAM data.	10 clocks
Set DDRAM Address	0	0	1		Add						Sets DDRAM address, followed by transfer of DDRAM data.	10 clocks
Read Busy Flag and Address	0	1	BF		Acc						Reads the busy flag (BF) which indicates internal operation and the contents of the address counter.	0
Write Data to CG or DDRAM	1	0	Write Data								Writes data to DDRAM or CGRAM.	10 clocks
Read Data from CG or DDRAM	1	1	Read Data								Reads data from DDRAM or CGRAM.	10 clocks

* Don't care

Write Only Instructions

Clear Display
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	0	0	0	0	0	0	1
$01 H$							

RS = 0

This instruction

1. loads all locations in the display data (DD) RAM with 20 H .
2. clears the contents of the address counter to 0 H .
3. sets the display for zero character shift.
4. sets the address counter to point to the DDRAM.
5. , if the cursor is displayed, moves the cursor to the left most character in the display or, if a two line display is used, moves the cursor to the leftmost character in the top line (line 1).
6. sets the address counter to increment on each access of DDRAM or CGRAM.

Cursor Home

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	0	0	0	0	0	1	$*$
$\mathbf{R S}=\mathbf{0}$	$02 \mathrm{H}, 03 \mathrm{H}$						

This instruction

1. clears the contents of the address counter to 0 H .
2. sets the address counter to point to the DDRAM.
3. sets the display for zero character shift.
4. , if the cursor is displayed, moves the cursor to the left most character in the display or, if a two line display is used, the left most character in the top line (line 1).

Entry Mode Set

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	0	0	0	0	1	I / \bar{D}	S
$\mathbf{R S}=\mathbf{0}$	04 H to 07 H						

- The I/ $\overline{\mathrm{D}}$ bit selects the way in which the contents of the address counter are modified after every access to DDRAM or CGRAM.
- $\mathrm{I} / \overline{\mathrm{D}}=1$: The address counter is incremented.
- I/ $\overline{\mathrm{D}}=0$: The address counter is decremented.
- The S bit enables display shift, instead of cursor shift, after each write or read to the DDRAM.
- $\mathrm{S}=1$: Display shift enabled.
- $S=0$: Cursor shift enabled.

The direction in which the display is shifted is opposite in sense to that of the cursor. For example if $S=0$ and $\mathrm{I} / \overline{\mathrm{D}}=1$ the cursor would shift one character to the right after an MPU write to DDRAM. However if $S=1$ and $I / \overline{\mathrm{D}}=1$, the display would shift one character to the left and the cursor would maintain its position on the panel.
The cursor will already be shifted in the direction selected by I/D during reads of the DDRAM, irrespective of the value of S. Similarly reading and
writing the CGRAM always shifts the cursor. Note that if a two line display is used both lines will be shifted simultaneously.

Display ON/OFF

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

| 0 | 0 | 0 | 0 | 1 | D | C | B |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | RS = 0

This instruction controls various features of the display.

- The D bit turns the entire display on or off.
- $\mathrm{D}=1$: Display on
- $\mathrm{D}=0$: Display off
- The C bit turns the cursor on or off.
- $\mathrm{C}=1$: Cursor on
- $\mathrm{C}=0$: Cursor off
- The B bit enables blinking of the character the cursor coincides with.
- $\mathrm{B}=1$: Blinking on
- $\mathrm{B}=0$: Blinking off

Blinking is achieved by alternating between a normal and all dark display of a character. The blinking period is set at 204800 fosc. For example if fOSC $=250$ kHz the cursor will blink with a period of 0.8192 seconds, or about 1.2 Hz .

Cursor/Display Shift

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	0	0	1	S / \bar{C}	R / \bar{L}	*	*
$10 H$ to $1 F H$							

RS = 0
This instruction shifts the display and/or moves the cursor, on character to the left or right, regardless of a DDRAM ready/write.

- The S/C bit selects movement of the cursor or movement of both the cursor and the display.
- $S / \bar{C}=1:$ Shift both cursor and display
- $\mathrm{S} / \overline{\mathrm{C}}=0$: Shift cursor only
- The $\mathrm{R} / \overline{\mathrm{L}}$ bit selects leftward or rightward movement of the display and/or cursor.
- $\mathrm{R} / \overline{\mathrm{L}}=1$: Shift one character right
- $R / \bar{L}=0$: Shift one character left

System Set

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	0	1	IF	N	F	*	*
$20 y$	to 3 FH						

RS $=0$
This instruction initializes the system, and must be the first instruction executed after power-on.

- The IF bit selects between an 8-bit or a 4-bit MPU interface.
- $\mathrm{IF}=1: 8$-bit MPU interface using DB7 to DB0.
- IF = 0: 4-bit MPU interface using DB7 to DB4.
- The N and F bits select the number of display lines and the corresponding duty cycle, as listed in table 2.

TABLE 2 Combinations of Display Lines and Duty Cycle

N	F	Number of Line	Duty Ratio	Common Output Signal	Non-Selected Common Output Signal
0	0	1 line	$1 / 8$	COM1 to COM8	COM9 to COM16
0	1	1 line	$1 / 11$	COM1 to COM11	COM12 to COM16
1	$*$	2 lines	$1 / 16$	COM1 to COM16	-

Set CGRAM Address

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	1	AcR
40 H to 7 FH		

RS = 0
This instruction

1. loads a new 6-bit address into the address counter.
2. sets the address counter to address CGRAM.

Once "Set CGRAM Address" has been executed, the contents of the address counter will be automatically modified after every access of CGRAM, as determined by the "Entry Mode Set" instruction.
If the "Set CGRAM Address" instruction is issued by the system MPU while the display is enabled, and if either the cursor is on or blink is on, pseudo-cursor or pseudoblink appears. To prevent this, turn both the cursor and display blink off before loading a new CGRAM address. The active width of the address counter, when it is addressing CGRAM, is 6-bits so the counter will wrap around to 00 H from 3 FH if more than 64 bytes of data are written to CGRAM.

Set DDRAM Address

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

1	AdD
$\mathbf{R S}=\mathbf{0}$	80 H to CFH $\ldots 1$ line
	80 H to A7H line $1 \ldots 2$ line
	COH to E7H line $2 \ldots 2$ line

This instruction

1. loads a new 7 -bit address into the address counter.
2. sets the address counter to point to the DDRAM.

Once the "Set DDRAM Address" instruction has been executed, the contents of the address counter will be automatically modified after each access of DDRAM, as selected by the "Entry Mode Set" instruction.
The SED 1278 has only 80 DDRAM locations. The valid address spaces for various display configurations are listed in table 3.

TABLE 3 Valid CGRAM Address Ranges

Number of Lines		Characters	ADR
1-line		80	00 H to 4 FH
2-line	1st line	40	00 H to 27 H
	2nd line	40	40 H to 67 H

Write Data

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DATA
$R S=1$
This instruction writes the data in DB7 to DB0 into either the CGRAM or the DDRAM. The RAM space (CG or DD), and the address in that space, that is accessed depends on whether a "Set CGRAM Address" or a "Set DDRAM Address" instruction was last executed, and on the parameters of that instruction.
The contents of the address counter will be automatically modified after each "Write Data", as determined by "Entry Mode Set". When data is written to the CGRAM, the DB7, DB6 and DB5 bits are not displayed directly as characters.

Read Only Instructions

\section*{Read Busy Flag/Address Counter DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
 | BF | Acc |
| :--- | :--- |}

RS =1

Reading the instruction register yields the current value of the address counter and the busy flag. This instruction must be executed prior to any other instructions.

- ACC, the address counter value, will point to a location in either CGRAM or DDRAM, depending on the type of "Set RAM Address" instruction last sent.
In "Busy Flag Check" immediately after executing "RAM Address Set" instruction, a valid address counter value can be read 5 clock cycles after the busy flag (BF) goes low.
In "Busy Flag Check" immediately after executing "Write Data" instruction, a valid address counter value can be ready as soon as BF goes low.
- The BF bit shows the status of the busy flag.
- $\mathrm{BF}=1$: SED1278 busy.
- $\mathrm{BF}=0$: SED1278 ready for next instruction.

Read Data
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
DATA
$\mathrm{RS}=1$
This instruction reads data from either CGRAM or DDRAM, depending on the type of "Set RAM Address" instructions last sent. The address in that space depends on the "Set RAM Address" instructions parameters. Immediately before executing "Read Data", "Set CGRAM Address" or "Set DDRAM Address" must be executed.
The contents of the address counter are modified after each "Read Data", as determined by "Entry Mode Set". Display shift is not executed, independently of "Entry Mode Set".

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage (1)	VDD	-3 to +7.0	V
Supply voltage (2)	V_{1} to V 5	-0.3 to $\mathrm{VDD}+0.3$	V
Input voltage	VIN	-0.3 to $\mathrm{VDD}+0.3$	V
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-65 to +150	${ }^{\circ} \mathrm{C}$
Soldering temperature \times time ${ }^{* *}$	Tsol	260,10	${ }^{\circ} \mathrm{C}, \mathrm{s}$
Power dissipation	PD	300	mW

Notes: 1. Vdd $>\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{5}>\mathrm{Vss}$
2. A flat package product can become less resistant to moisture if exposed to extreme temperatures. When mounting this package on a printed circuit board, use a soldering technique which avoids excessive thermal loading of the package resin.
3. All voltages assume Vss $=0 \mathrm{~V}$.

DC Characteristics

Parameter			$\left(\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$				
	Symbol	Condition	Rating			Unit	Applicable Pins
			min	typ	max		
" H " level input voltage (1) (TTL)	VIH1		2.0	-	Vdd	V	DB0 to DB7, RS,
"L" level input voltage (1) (TTL)	VIL1		Vss	-	0.8	V	$\mathrm{R} / \overline{\mathrm{W}}$, E
"H" level input voltage (2) (CMOS)	$\mathrm{V}_{\mathbf{1 H} 2}$		VdD-1.0	-	VDD	V	
"L" level input voltage (2) (CMOS)	VIL2		Vss	-	1.0	V	SC1
"H" level output voltage (1) (TTL)	Voh1	$-\mathrm{loH}=0.205 \mathrm{~mA}$	2.4	-	-	V	DB0 to DB7
"L" level output voltage (1) (TTL)	Vol1	$\mathrm{IOL}=1.6 \mathrm{~mA}$	-	-	0.4	V	DB0 to DB7
"H" level output voltage (2) (CMOS)	Voh2	$-\mathrm{loH}=0.04 \mathrm{~mA}$	0.9Vdd	-	-	V	
"L" level output voltage (2) (CMOS)	Vol2	$\mathrm{loL}=0.04 \mathrm{~mA}$	-	-	0.1Vdo	V	SCL, LP,
Driver-on resistor (COM)	Rсом	$\left\|\mathrm{Vcom}-\mathrm{V}_{\mathrm{n}}\right\|=0.5 \mathrm{~V}$	-	2	10	k Ω	COM1 to COM16
Driver-on resistor (SEG)	Rseg	$\left\|\mathrm{Vseg}-\mathrm{V}_{\mathrm{n}}\right\|=0.5 \mathrm{~V}$	-	2.5	10	k Ω	SEG1 to SEG40
I/O leakage current	ILI	$\mathrm{VIN}=0$ to VDD	-	-	1	$\mu \mathrm{A}$	
Pull-up MOS current	-IP	$\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$	50	125	250	$\mu \mathrm{A}$	$\begin{gathered} \text { DB0 to } \mathrm{CB} 7, \mathrm{RS}, \\ \mathrm{R} / \overline{\mathrm{W}} \end{gathered}$
Supply current	Iop	Rf oscillation, from external clock $\mathrm{V} D \mathrm{D}=5 \mathrm{~V}$, fosc $=\mathrm{fcP}=270 \mathrm{kHz}$	-	0.5	0.8	mA	Vdd

AC Characteristics

- MPU write cycle timing (write to SED1278)

$\left(\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Rating		Unit
			min	max	
Enable cycle time	tcycE		500	-	ns
Enable "H" level pulsewidth	twEH		220	-	ns
Enable rise/fall time	tre, ttE		-	25	ns
RS, R/W setup time	tAS		40	-	ns
RS, R/W address hold time	tAH		10	-	ns
Data setup time	tDS		60	-	ns
Write data hold time	tDH		10	-	ns

- MPU read cycle timing (read from SED1278)

$\left(\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $\left.75^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Rating		Unit
			min	max	
Enable cycle time	tcyce		500	-	ns
Enable "H" level pulsewidth	twe		220	-	ns
Enable rise/fall time	tre, tie		-	25	ns
RS, R/W setup time	tas		40	-	ns
RS, R/ $\overline{\mathrm{W}}$ address hold time	tah		10	-	ns
Read data setup time	trd	$\mathrm{CL}=100 \mathrm{pF}$	-	120	ns
Read data hold time	tDHR		20	-	ns

- External segment driver signal timing

$\left(\mathrm{VdD}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20\right.$ to $\left.70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Rating		Unit
			\min	$\boldsymbol{m a x}$	
Clock pulsewidth: High level	twCLH		$0.8 / 2 \mathrm{fosc}$	-	ns
Clock pulsewidth: Low level	twCLL		$0.8 / 2 \mathrm{fosc}$	-	ns
Latch pulse setup time	tDSLP		$0.7 / 2 \mathrm{fosc}$	-	ns
Data setup time	tosx		$0.7 / 2 \mathrm{fosc}$	-	ns
Data hold time	tDHX		$0.7 / 2 \mathrm{fosc}$	-	ns
FR delay	tDFR		-1000	1000	ns

- Power-on reset timing

($\mathrm{Ta}=-20$ to 75 deg. C)

LCD Drive Voltages

Pin	Duty 1/8 or 1/11	Duty 1/16
V_{1}	3/4 (VDD - V5)	4/5 (VdD - V5)
V2	$2 / 4$ (VDD - V5)	$3 / 5$ (VdD - V5)
V3	2/4 (VDD - V5)	2/5 (VDD - V5)
V4	1/4 (VDD - V5)	1/5 (VdD - V5)
V5	V5	V5

Mechanical Specifications

SED1278F Package Dimensions

SED1278D Package Dimensions

Chip size: $\quad 4.50 \mathrm{~mm} \times 3.67 \mathrm{~mm}$
Chip thickness:
Pad size: $400 \mu \mathrm{~m}$

Pad pitch: $\quad 182 \mu \mathrm{~m}$

Pad		X ($\mu \mathrm{m}$)	$Y(\mu \mathrm{~m})$
Number	Name		
1	SEG22	2087	1671
2	SEG21	1905	1671
3	SEG20	1723	1671
4	SEG19	1541	1671
5	SEG18	1359	1671
6	SEG17	1177	1671
7	SEG16	995	1671
8	SEG15	814	1671
9	SEG14	633	1671
10	SEG13	452	1671
11	SEG12	272	1671
12	SEG11	91	1671
13	SEG10	-91	1671
14	SEG9	-272	1671
15	SEG8	-452	1671
16	SEG7	-633	1671
17	SEG6	-814	1671
18	SEG5	-995	1671
19	SEG4	-1177	1671
20	SEG3	-1359	1671
21	SEG2	-1541	1671
22	SEG1	-1723	1671
23	GND	-1905	1671
24	OSC1	-2087	1671
25	OSC2	-2087	1365
26	V_{1}	-2087	1183
27	V_{2}	-2087	1001
28	V3	-2087	819
29	V4	-2087	637
30	V5	-2087	455
31	LP	-2087	273
32	XSCL	-2087	91
33	VdD	-2087	-91
34	FR	-2087	-273
35	DO	-2087	-455
36	RS	-2087	-637
37	R/W	-2087	-819
38	E	-2087	-1001
39	DB0	-2087	-1183
40	DB1	-2087	-1365

Pad		X ($\mu \mathrm{m}$)	$\mathrm{Y}(\mu \mathrm{m})$
Number	Name		
41	DB2	-2087	-1671
42	DB3	-1905	-1671
43	DB4	-1723	-1671
44	DB5	-1541	-1671
45	DB6	-1359	-1671
46	DB7	-1177	-1671
47	COM1	-995	-1671
48	COM2	-814	-1671
49	COM3	-633	-1671
50	COM4	-452	-1671
51	COM5	-272	-1671
52	COM6	-91	-1671
53	COM7	91	-1671
54	COM8	272	-1671
55	COM9	452	-1671
56	COM10	633	-1671
57	COM11	814	-1671
58	COM12	995	-1671
59	COM13	1177	-1671
60	COM14	1359	-1671
61	COM15	1541	-1671
62	COM16	1723	-1671
63	SEG40	1905	-1671
64	SEG39	2087	-1671
65	SEG38	2087	-1365
66	SEG37	2087	-1183
67	SEG36	2087	-1001
68	SEG35	2087	-819
69	SEG34	2087	-637
70	SEG33	2087	-455
71	SEG32	2087	-273
72	SEG31	2087	-91
73	SEG30	2087	91
74	SEG29	2087	273
75	SEG28	2087	455
76	SEG27	2087	637
77	SEG26	2087	819
78	SEG25	2087	1001
79	SEG24	2087	1183
80	SEG23	2087	1365

OPERATION

The Busy Flag

The SED1278 takes between 10 and 410 clock cycles to execute instructions. During that period additional instructions should not be issued. The device is provided with a busy flag to let the user check the internal state of the chip. BF should be 0 before another instruction is issued.
If the busy flag is not checked between instructions the user must arrange for a guaranteed delay of more than the instruction execution time, before issuing the next instruction.

4-Bit MPU Interface

If a "System Set" instruction is issued with bit 4 set to 0 , then the SED1278 will operate with a 4-bit MPU data bus interface.
If a 4-bit interface is used, the 8 -bit instructions are written nibble by nibble; the high-order nibble being written first, followed by the low-order nibble. It is not necessary to check the busy flag between writing separate nibbles of individual instructions.
Reading the Busy Flag/Address Counter yields the highorder nibble first, followed by the low-order nibble.

System Initialization

Power-on reset

Although the SED1278 has no external reset input, it will automatically reset on system power-on. The sequence starts once VDD < 4.5 V .
While the SED1278 is resetting the busy flag is set to 1 . The reset takes about 3,750 clock cycles. For example if fosc $=250 \mathrm{kHz}$, the reset sequence takes about 30 ms . Reset places the SED1278 in a state where

- the display is clear.
- the system configuration corresponds to
- $\mathrm{IF}=1: \quad 8$-bit MPU interface
- $\mathrm{N}=0$: 1 -line display
- $\mathrm{F}=0: 1 / 8$ duty cycle
- the display configuration corresponds to
- $\mathrm{D}=0$: Display off
- $\mathrm{C}=0$: Cursor off
- $\mathrm{B}=0$: Blink off
- the entry mode is set to
- I/D = 1: Increment
- $S=1$: No display shift

Software initialization

Initialization during power-on reset involves several unstable factors related to power-supply output fluctuations. For this reason it is strongly recommended that a software initialization sequence is followed.

- Software Initialization (8-bit MPU bus, fosc $=250 \mathrm{kHz}$)

- Software Initialization (4-bit MPU bus, fosc $=250 \mathrm{kHz}$)
[1] Power-on

[2]

4.1 ms or more
[3]

$100 \mu \mathrm{~s}$ or more
[4]

40μ s or more

(High-order)
(Low-order)
(High-order)
(Low-order)
(High-order)
(Low-order)

RS	R / W	E
0	1	1
0	1	1

THE CHARACTER GENERATOR

Character Generator ROM (CGROM)

The SED 1278 contains a 240 character, masked CGROM. Each character is 5×10 pixels, for $1 / 11$ duty cycle compatibility. Refer to Appendix A for available codes and their corresponding fonts.
Because the CGROM is masked, customers may arrange to have their own CGROM masks made.
A custom mask allows the user to have

- their own character set.
- a character set of up to 256 characters.

Please contact the SEIKO EPSON Marketing Department for further information.
If a custom CGROM is used, two things should be noted.

1. The "Clear Display" instruction relies on the character whose code is 20 H being a blank.
2. If more than 240 ROMed characters are specified, then the number of CGRAM characters available is correspondingly reduced. The physical RAM space is still available, and is available for use as memory, however it will no longer have an associated character code.
3. The character ROM implemented in a particular chip is indicated by a two character suffix attached to the device number, for example SED1278F0A.

Character Generator RAM (CGRAM)

The SED1278 has 64 bytes of CGRAM, allowing the user to program up to 8 characters.

5×8 pixel font ($1 / 8$ or $1 / 16$ duty cycle)

The maximum character height is 8 pixels, however if a cursor is used row 7 should be all zeros. 8 such characters are available to the user.
The CGRAM address is made up of the following components.

- The least significant three bits, a2 to a0, specify the row number of the character data.
- Bits a5 to a3 are made up of the least significant three bits of the character code.
- The most significant bit, a7, is ignored.

Figure 1 shows an example 5×8 pixel font.

CGRAM address						CGRAM data (Character pattern)							
A5	.	.			A0	DB7	.	.	-	.		.	DB0
0	0	0	0	0	0	*	*	*	0	0	0	0	1
0	0	0	0	0	1	*	*	*	0	0	0	0	1
0	0	0	0	1	0	*	*	*	0	1	0	0	1
0	0	0	0	1	1	*	*	*	1	1	1	1	1
0	0	0	1	0	0	*	*	*	0	1	0	0	0
0	0	0	1	0	1	*	*	*	0	0	0	0	0
0	0	0	1	1	0	*	*	*	0	0	0	0	0
0	0	0	1	1	1	*	*	*	0	0	0	0	0

Figure 1 A 5×8 Pixel Font

5×11 pixel font ($1 / 11$ duty cycle)

The maximum character height is 11 pixels, however if a cursor is used row 10 must be left blank.
The SED1278 requires that, although the maximum character height is 11 rows, each character is allocated 16 rows (bytes) of address space. The last five bytes are ignored.
The CGRAM address is made up of the following components.

- The least significant 4 bits, a3 to a0, specify the row number of the character data.
- Bits a5 and a4 correspond to bits 2 and 3, respectively, of the character code.
- The most significant bit, a7, is ignored.

Figure 2 shows an example 5×11 pixel font.

CGRAM address						CGRAM data							
A5	A0	DB7	DB0
0	0	0	0	0	0	*	*	*	0	0	0	0	1
0	0	0	0	0	1	*	*	*	0	0	0	0	1
0	0	0	0	1	0	*	*	*	0	0	0	0	1
0	0	0	0	1	1	*	*	*	0	0	1	0	1
0	0	0	1	0	0	*	*	*	0	1	0	0	1
0	0	0	1	0	1	*	*	*	1	1	1	1	1
0	0	0	1	1	0	*	*	*	0	1	0	0	0
0	0	0	1	1	1	*	*	*	0	0	1	0	0
0	0	1	0	0	0	*	*	*	0	0	0	0	0
0	0	1	0	0	1	*	*	*	0	0	0	0	0
0	0	1	0	1	0	*	*	*	0	0	0	0	0
0	0	1	0	1	1	*	*	*	*	*	*	*	*
0	0	1	1	0	0	*	*	*	*	*	*	*	*
0	0	1	1	0	1	*	*	*	*	*	*	*	*
0	0	1	1	1	0	*	*	*	*	*	*	*	*
0	0	1	1	1	1	*	*	*	*	*	*	*	*

Figure 2 A 5×11 Pixel Font

LCD INTERFACE

LCD Drive Voltages

The SED1278 generates segment and common drive signals using the voltages supplied to pins $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$ and V5. The voltage levels at these pins depend on the duty cycle of the display. The specifications of these voltages.
The simplest way of producing these voltages is to use a resistive dividing network.
Figures 3 and 4 show examples of networks for $1 / 8$, or $1 /$ 11 , and $1 / 16$ duty cycles respectively.

Figure 3 LCD Drive Voltage Network - $1 / 8$ or $1 / 11$ Duty Cycle
SED1278

Figure 4 LCD Drive Voltage Network - 1/16 Duty Cycle
Notes: 1. V5 is set using a potentiometer and (VDD-Vss).
2. The power supply to the SED1278 should be bypassed with a capacitor, Co, of at least $0.1 \mu \mathrm{~F}$ placed as close to the chip as possible.

LCD Drive Signal Waveforms

The segment and common drive waveforms generated by the SED1278, for various duty cycle ratios, are shown in figures 5, 6 and 7 .

Figure 5 1/8 Duty Cycle Drive Waveforms

Figure 6 1/11 Duty Cycle Drive Waveforms

Figure 7 1/16 Duty Cycle Drive Waveforms

LCD Interface Configurations

The SED1278 has 16 common and 40 segment drive outputs, enabling the chip to drive up to 16 characters by itself. The drive capability can be expanded to 80 characters, by using SED1181FLA external segment drivers.

- 1 line
- 8 characters
- 5×7 pixels + cursor
- 1/8 duty cycle
- System set: $\mathrm{N}=0, \mathrm{~F}=0$

- 1 line
- 8 characters
- 5×10 pixels + cursor
- 1/11 duty cycle
- System set: $\mathrm{N}=0, \mathrm{~F}=1$

- 1 line
- 20 characters
- 5×7 pixels + cursor
- $1 / 8$ duty cycle
- System set: $\mathrm{N}=0, \mathrm{~F}=0$

- 1 line
- 80 characters
- 5×7 pixels + cursor
- $1 / 8$ duty cycle
- System set: $\mathrm{N}=0, \mathrm{~F}=0$

- 2 line
- 8 characters
- 5×7 pixels + cursor
- 1/16 duty cycle
- System set: $\mathrm{N}=1, \mathrm{~F}=$ don't care

- 2 line
- 20 characters
- 5×7 pixels + cursor
- 1/16 duty cycle
- System set: $\mathrm{N}=1, \mathrm{~F}=$ don't care

- 2 line
- 40 characters
- 5×7 pixels + cursor
- 16 duty cycle
- System set: $\mathrm{N}=1, \mathrm{~F}=$ don't care

MPU INTERFACE

The SED1278 has selectable 8- or 4-bit MPU interface.
An example of a typical 8-bit MPU interface is shown figure 8.

Figure 8 Interfacing the SED1278 to the Zilog Z80®

COMPARISON WITH HD44780 BY HITACHI

Item	HD44780 (Hitachi)	SED1278
Data display RAM	80 bytes	\leftarrow
Character generator ROM Character font	$\begin{gathered} 192 \text { types } \\ 5 \times 7: 160 \text { types } \\ 5 \times 10: 32 \text { types } \end{gathered}$	$\begin{gathered} 240 \text { types } \\ 5 \times 10: 240 \text { types } \end{gathered}$
Character generator RAM	64 bytes	\leftarrow
LCD drive output	16 common driver outputs 40 segment drive outputs	\leftarrow
Character font (with cursor)	5×8 dots ($1 / 8$ and $1 / 16$ duty) 5×11 dots ($1 / 1$ duty)	\leftarrow
Conversion to duty	1/8, 1/11, 1/16	\leftarrow
LCD drive voltage (VDD-V5)	Max. 13.5 V Min. 4.6 V	Max. 1 VDD Min. 3 V
LCD drive waveform	Waveform A (Single frame AC drive)	Waveform D (Dual frame AC drive)
E pulse width	450 nsec	220 nsec
Timing to change the address counter subsequent to CGRAM and DDRAM data writing and reading	The contents of address counter are determined 1.5 clock after release of busy state (6 microseconds at fosc $=250 \mathrm{kHz}$).	The contents of address counter are determined immediately after release of busy state.
No. of instructions	11	\leftarrow
Reset terminal	Not provided	\leftarrow
Chip selector terminal	Not provided	\leftarrow
Power-on reset terminal	Provided	\leftarrow
Extension segment driver	Hitachi HD44100: 40 outputs SED1181FLA: 64 outputs	\leftarrow
Package	80-pin plastic flat package	\leftarrow
Pin layout		Pin compatible

APPENDIX A: CHARACTER CODES AND FONTS

SED1278F0A/SED1278D0A

		Higher 4-bit (D4 to D7) of Character Code (Hexadecimal)															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	CG RAM (1)				$\begin{aligned} & \hline ": ~ \\ & \text { :': } \\ & \hline \end{aligned}$							-....			" ${ }^{\prime}$:-'
	1	CG RAM (2)										: $:$:	:',
	2	CG RAM (3)		:				$\text { : } \cdot$									
	3	CG RAM (4)						\|":-"				\#				":-	$\because \because$
	4	CG RAM (5)						$\left\lvert\, \begin{gathered} -\quad "! \\ a \\ \hline \end{gathered}\right.$				' \quad.	...'	:			:'':
	5	CG RAM (6)				$\begin{array}{\|l\|} \hline \cdots \cdots \\ : \cdots \\ : \cdots . . . \end{array}$:":	:			:	-..:-		-	"':'	-":
Lower 4-bit (D0 to D3) of Character Code (Hexadecimal)	6	CG RAM (7)			:"				:.$:$					- \quad.			
	7	CG RAM (8)		\because			:	:	:			\|:.:":				:']:	-':'
	8	CG RAM (1)			:...							-:'		-:':	:	.:'	": ${ }^{\prime \prime}$ "'
	9	CG RAM (2)						:	: C : C			:...		!		- :	:
	A	CG RAM (3)		: : :":	: :				\|:口:			-'.'	.		!. ${ }^{\text {- }}$	-.	
	B	CG RAM (4)		-: :-	$\begin{array}{\|l} \text { :: } \\ \text { : } \end{array}$		$\begin{aligned} & \hline: " \\ & \vdots \\ & \vdots . . \end{aligned}$		$\begin{aligned} & \prime \prime \\ & : \\ & \hline \end{aligned}$			-:':		:....		\because	-',
	C	CG RAM (5)		':	$\begin{aligned} & \hline: " ~ \\ & \hline \because \end{aligned}$)		?	:				$\left\lvert\, \begin{aligned} & \because: \\ & \because . . \\ & \hline \end{aligned}\right.$	-'	:'"	:':	:口:
	D	CG RAM (6)		'-'	-	:						\cdots	"':'	"':	". ${ }^{\text {. }}$ "		. \quad.
	E	CG RAM (7)		:		:		:-":	- :			"..':		:	\cdots	:'':	
	F	CG RAM (8)		\|."		:":			-':-'			: :		\cdots	:':	: \quad :	

		Higher 4-bit (D4 to D7) of Character Code (Hexadecimal)															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	CG RAM (1)					:":	:',					-				''!''
	1	CG RAM (2)											\cdots	:			'.:'
	2	CG RAM (3)		!									$\because \cdot$:":"			
	3	CG RAM (4)				:"'.		: ${ }^{\prime}$:'.:		:		':			-'	:
	4	CG RAM (5)			:':				.':				-'				:
	5	CG RAM (6)			'.	\|:		:...:	:		$\begin{array}{\|l\|} \hline \because \\ \cdots \\ \cdots \\ \hline . . . \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline: "- \\ \hline \vdots \\ \hline 1 . . . \\ \hline \end{array}$: $:$:
	6	CG RAM (7)			:"':	?'.'			:		:"	$\left\lvert\, \begin{aligned} & \text { a:- } \\ & \hdashline:-\quad \mid \end{aligned}\right.$: : $:$				
	7	CG RAM (8)		:	\vdots		:		:		\|'.	'.					-:':'
	8	CG RAM (1)			[".-	:		:			:...:		\cdots	:":		: ${ }^{-}$	
	9	CG RAM (2)							:	:			: \cdots \cdots	"'-			-':':
	A	CG RAM (3)	$\begin{aligned} & \hline \because \\ & \because ": ~ \end{aligned}$					'.:			$\left\lvert\, \begin{array}{ll} 1 \\ \vdots & \vdots \end{array}\right.$:
	B	CG RAM (4)	:':	- :									'			:	.':
	C	CG RAM (5)	\ldots	\because	$\begin{aligned} & \hline: \\ & \because \\ & \hline \end{aligned}$		".	$\begin{gathered} \vdots \\ \vdots \\ \vdots \end{gathered}$:			-.	菏:				\%'"
	D		:': :	- ${ }^{\text {- }}$				\|.:		-...:			:			::!:
	E	CG RAM (7)		::			-		\cdots				$\begin{array}{\|l\|} \hline \vdots \\ \hline! \\ \hline \end{array}$:
	F	CG RAM (8)	$\begin{array}{\|l\|} \square! \\ \because: \\ \hline 1 \end{array}$:":		$\left\lvert\, \begin{aligned} & \text { :'... } \\ & \hline \end{aligned}\right.$:':	:		:":':				:"':	:'.':

		Higher 4－bit（D4 to D7）of Character Code（Hexadecimal）															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
	0	CG RAM （1）				$\text { : } \because$		－					\|:":	：＇：	\|:	！	：＇：
	1	CG RAM （2）				：＂：			－＇．＇：								－＇：
	2	CG RAM （3）		：											$\begin{aligned} & \hline: 口 \\ & \vdots \\ & \hline: \end{aligned}$		－：
	3	CG RAM （4）					$\text { : } \because \cdot$	\|"...				$\begin{aligned} & \text { :": } \\ & \text { :'..: } \end{aligned}$				！	
	4	CG RAM （5）			: : ':												：＇：：
	5	CG RAM （6）							：							\％	＂：＇
	6	CG RAM （7）				：－．＂	\|: :		\|:			－＇			：＇：		：＇：
	7	CG RAM （8）		：＇	\|"	：＂：		-:..:	：${ }^{\text {a }}$							：	
	8	CG RAM （1）		:'	:"':	\|: : :						: :':		＇．．．＇	！：		
	9	CG RAM （2）							: :..:			：	：＇：＇：				：\％
	A	CG RAM （3）			：：			＇				：$:$ ：．	：		：		：＇：＇：
	B	CG RAM （4）		-:	$\begin{aligned} & \text { :: } \\ & \text { :: } \end{aligned}$		$\begin{aligned} & \hline: " \\ & \vdots \\ & \vdots \end{aligned}$	：	:'								：
	C	CG RAM （5）		＂：	$\begin{aligned} & \hline: \\ & \because \\ & \because \end{aligned}$		$\text { ' } \because$		＇\cdot ．＇				：＇＇：	：$\%$: :	：＇：	：＇：
	D	CG RAM （6）		－．．．－	－．．．．＇							：	：$:$	！			\cdots
	E	CG RAM （7）		：：					:':			＇：	：＇：		：＇：	$\begin{aligned} & \hline: 口 \\ & : 口: 口 \end{aligned}$	
	F	CG RAM （8）		．＂${ }^{*}$		：．．．		＂＇．：	：＇：＇			＂：${ }^{\text {a }}$		"			品：

		Higher 4－bit（D4 to D7）of Character Code（Hexadecimal）															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Lower 4－bit（D0 to D3）of Character Code（Hexadecimal）	0	CG RAM （1）						＇．									＇：＇
	1	CG RAM （2）			$\begin{gathered} \hline: \\ \hline \vdots \\ \hline \end{gathered}$				\cdots			＂＇${ }_{\text {＇}}$	$\left\lvert\, \begin{aligned} & \because: \\ & : 口: 口: ~ \end{aligned}\right.$	$\begin{array}{\|l\|} \hline: \\ \hline: \\ \hline \end{array}$		．＇．	；
	2	CG RAM （3）		：					$\text { : } \cdot "$			$\begin{array}{\|l\|} \hline:: ' \\ \hdashline: . .: ~ \end{array}$	：＂－＂				
	3	CG RAM （4）							$\left\lvert\, \begin{aligned} & \cdots \\ & \cdots \cdots \\ & \cdots \end{aligned}\right.$: :			－：	
	4	CG RAM （5）											\|:"...				：
	5	CG RAM （6）					：		：			：			＇	：\quad.	
	6	CG RAM （7）			$\text { : } \because$: : :			－＇	:'	：＂：	\cdots		\＃
	7	CG RAM （8）		\because			：		：					\square		：${ }^{\text {：}}$	－
	8	CG RAM （1）					: :		":			\|:':	:	$\begin{array}{\|l\|} \hline: \\ \hline: " . . " ~ \end{array}$: :		：
	9	CG RAM （2）							$\left\|\begin{array}{c} : . . .: \\ \cdots \end{array}\right\|$			：	－：＇：	－＇：＂	＇：	：－	：＂．
	A	CG RAM (3)		$\text { : } \because:$	$\text { : }: 1$			：	－			：$:$ ：$:$ ：		：：	！．	：	：$:=$
	B	CG RAM （4）		－：＇：	$\begin{aligned} & \text { :: } \\ & \text { :: } \end{aligned}$		$\begin{aligned} & \hline \text { " } \\ & \vdots . . \end{aligned}$	：				＇： \vdots \vdots	: :	：：	$\begin{array}{\|l\|} \hline! \\ \vdots \\ \vdots \end{array}$		：
	C	CG RAM （5）		＂：	$\begin{aligned} & \hline: \\ & \because \\ & \hline \end{aligned}$				－＇．．＇								
	D	CG RAM (6)		－．．．．	－．．．．							：	：	！	：	－＂：	－
	E	CG RAM （7）		：：					.:			＂．．：	\|:":		$\begin{aligned} & \text { :' } \\ & \hline: \end{aligned}$	$\begin{aligned} & \text { :': } \\ & \text { :'.: } \end{aligned}$	＂
	F	CG RAM （8）		．.$^{\prime \prime}$				\|"...:	－：＇．			：．．．：	：＂	\|			号：

		Higher 4-bit (D4 to D7) of Character Code (Hexadecimal)															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Lower 4-bit (D0 to D3) of Character Code (Hexadecimal)	0	CG RAM (1)					:":	${ }^{\prime} \cdot$:...:	:		: $:=$
	1	CG RAM (2)						\|...							!	.:	
	2	CG RAM (3)		! :					\|:'					\|:..		:.:	
	3	CG RAM (4)					\|"...		$\left\|\begin{array}{l\|} \hline . . \\ \cdots \\ \cdots \end{array}\right\|$:	: :	:"'	
	4	CG RAM (5)			:...				$\begin{array}{\|l\|} \hline \vdots \\ \vdots \\ \hline \end{array}$:':	:	:-.:
	5	CG RAM (6)					:	:":	:						-: : :	\	"'.
	6	CG RAM (7)											:: : :	:.:'	'":'		:':
	7	CG RAM (8)		\because	:		$\left\lvert\, \begin{aligned} & a \\ & : ~: ~ \\ & : ~ \end{aligned}\right.$:					':':		-	(
	8	CG RAM (1)		$\begin{array}{\|l\|} \hline: " \\ \vdots \end{array}$:"':							?'"		. ${ }^{*}$	":':	"	:
	9	CG RAM (2)												".".		- ${ }^{\prime}$	
	A	CG RAM (3)		:	$\begin{aligned} & \text { :: } \\ & \text { :: } \end{aligned}$		\|":"	":					\|:	:". :"	"	\|:	-
	B	CG RAM (4)		-:	$\begin{aligned} & \text { :: } \\ & \text { :: } \end{aligned}$		"'	:	: ${ }^{\prime}$			$\begin{array}{\|l\|l\|} \hline \vdots & \vdots \\ \hline \end{array}$:' :			-
	C	CG RAM (5)		":	$\begin{aligned} & \hline: " \\ & \because \\ & \hline \end{aligned}$												'.
	D	CG RAM (6)		.-.	-....				: $:$:"	:	:	: $\because=$
	E	CG RAM (7)		::					:'.:			!		:"	:.'.		:':'
	F	CG RAM (8)		. ${ }^{*}$		'		:i:':			-"':		$\begin{array}{\|r\|} \hline \text { ": } \\ \text { ": } \\ \hline 1 . . . \\ \hline \end{array}$::	:"..	安:

APPENDIX B: PIN CONSTRUCTION

Input Pin Type 1

- E
- OSC1

Input Pin Type 2

- RS
- $\mathrm{R} / \overline{\mathrm{W}}$

Output Pin

- OSC2
- XSCL, LP, FR, DO

I/O Pin

- DB0 to DB7

SED1280 Dot-Matrix LCD Controller

Technical Manual

Contents

OVERVIEW 10-1
FEATURES 10-1
BLOCK DIAGRAM 10-2
PIN DESCRIPTION 10-2
SPECIFICATIONS 10-3
FUNCTIONAL DESCRIPTION 10-6
DESIGN INFORMATION 10-14
APPLICATION CIRCUITS 10-15

OVERVIEW

The SED1280 is an enhanced version of the SED1278 dot-matrix LCD controller. In addition to the SED1278 functionality, the SED1280 also incorporates a keymatrix controller, LED drivers and additional input and output ports.
The SED1280 comprises the SED1278 core, display data and character generator RAM, character generator ROM, LCD segment and common drivers, LED-matrix and key-matrix inputs and outputs, extended input and output ports and a serial microcontroller interface. The SED1280 operates from a 5 V supply and is available in 100-pin QFP5s.

FEATURES

- LCD controller
- 80-byte, 80-character display data RAM
- Character generator ROM
- 240, 5×10-pixel characters
- Character generator RAM
- 64 bytes
- Eight selectable 5×7-pixel or 5×8-pixel characters.
- Four selectable 5×10-pixel or 5×11-pixel characters
- Outputs
- 40 segment outputs
- 16 common outputs
- Modes

Display type	Duty	Number of SED1181F common drivers	Character configuration (columns \times rows)
	$1 / 8$ or	0	8×1
	$1 / 11$	6	80×1
Two lines	$1 / 16$	0	8×2
		3	40×4

- Key matrix scan controller
- Eight key-scan outputs
- Ten key-scan inputs
- Can control an 8×10 key matrix.
- LED controller
- Five LED driver outputs
- Eight LED driver commons
- Can control a 5×8-LED matrix
- I/O ports
- Three input ports
- Two output ports
- Serial microcontroller interface
- Single 5 V supply
- 100-pin QFP5

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Name	
1	Vss	Ground
2 to 6	V1 to V5	LCD controller power supply inputs
7	LP	Data latch pulse output
8	XSCL	Data transfer clock
9	VDD	5 V supply
10	FR	LCD AC controller output
11	DO	Serial data output
12	SCK	1 MHz system clock input
13	SID	Serial data input
14	RST	Reset input
15 to 24	SWC10 to SWC1	Key-scan inputs
25 to $30,32,33$	SWS8 to SWS1	Multiplexed key-scan and LED output ports
34 to 36	EI3 to EI1	Expanded input ports
37 to 41	LE5 to LE1	LED controller outputs
42	SOD	Key- and expanded-input port status serial data output
43,44	EO2, EO1	Expanded output ports
45 to 60	COM1 to COM16	Common driver outputs
61 to 100	SEG40 to SEG1	Segment driver outputs

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage range	VDD	-0.3 to 7.0	V
	$\mathrm{~V}_{1}$ to V_{5}	-0.3 to $\mathrm{VDD}+0.3$	V
	V I	-0.3 to $\mathrm{VDD}+0.3$	V
Operating temperature range	Topg	-20 to 75	${ }^{\circ} \mathrm{C}$
Storage temperature range	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$

Note: $\quad V_{D D} \geq V_{1} \geq V_{2} \geq V_{3} \geq V_{4} \geq V_{5} \geq V_{S S}=0 \mathrm{~V}$

Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Supply voltage	VDD	5	V
Supply voltage range	VDD	4.5 to 5.5	V

SED1280

DC Electrical Characteristics

Parameter	Symbol	Condition	$\mathrm{VdD}=5.0 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$			
			Rating			Unit
			min	typ	max	
Supply current	Iop		-	-	1	mA
SCK and SID LOW-level input voltage	VIL1		-	-	0.8	V
El1 to El3 LOW-level input voltage	VIL2		Vss	-	1.0	V
SCK and SID HIGH-level input voltage	$\mathrm{VIH1}$		2.0	-	-	V
El1 to EI3 HIGH-level input voltage	VIH2		Vdd-1.0	-	VDd	V
El1 to El3 hysteresis voltage	Vhys		1	-	-	V
XSCL, LP and DO LOW-level output voltage	Vol1	$\mathrm{IOL}=0.04 \mathrm{~mA}$	-	-	0.1 VdD	V
SWS1 to SWS8 LOW-level output voltage	Vol2	$\mathrm{loL}=25 \mathrm{~mA}$	-	-	1.25	V
LE1 to LE5 LOW-level output voltage	Vol3	$\mathrm{IOL}=2.0 \mathrm{~mA}$	-	-	0.4	V
SOD, EO1 and EO2 LOW-level output voltage	Vol4	$\mathrm{IOL}=2.0 \mathrm{~mA}$	-	-	0.4	V
XSCL, LP and DO HIGH-level output voltage	Voh1	$\mathrm{IOH}=-0.04 \mathrm{~mA}$	0.9 VDD	-	-	V
SWS1 to SWS8 HIGH-level output voltage	Voh2	$\mathrm{IOH}=-200 \mu \mathrm{~A}$	4.0	-	-	V
LE1 to LE5 HIGH-level output voltage	Vон3	$\mathrm{IOH}=-200 \mu \mathrm{~A}$	2.4	-	-	V
SOD, EO1 and EO2 HIGH-level output voltage	Voh4	$\mathrm{lOH}=-200 \mu \mathrm{~A}$	2.4	-	-	V
SWC1 to SWC10 pull-up resistance	Rup1		5	10	20	$\mathrm{k} \Omega$
RST pull-up resistance	Rup2		50	100	200	$\mathrm{k} \Omega$
COM1 to COM16 driver ON resistance	Rcom	IVseg-Vnl $=0.5 \mathrm{~V}$	-	2	10	$\mathrm{k} \Omega$
SEG1 to SEG40 driver ON resistance	Rseg	$\mathrm{IVseg}-\mathrm{Vnl}=0.5 \mathrm{~V}$	-	2.5	10.0	$\mathrm{k} \Omega$
SCK frequency	fsck		0.5	1.0	1.4	MHz
SCK duty cycle	Duty		45	50	55	\%
SCK rise time	tr		-	-	200	ns
SCK fall time	tf_{f}		-	-	200	ns
SWC1 to SEC10 input debounce time	tkin		16	-	-	$\mu \mathrm{S}$
SWS1 to SWS8 instantaneous output current	Isws		-	-	25	mA
SWS1 to SWS8 total output current	Elsws		-	-	100	mA
LCD driver output voltage	VLCD	VLCD $=$ VDD-V5	3.0	-	VDD	V

Latch-up endurance

Parameter			$\mathrm{V} D \mathrm{LD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$			
	Symbol	Condition	Rating			Unit
			min	typ	max	
Input DC trigger current	ITI		-40	-	40	mA
Output DC trigger current	Іто		-40	-	40	mA

Static breakdown resistance

VDD $=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
Input terminal breakdown voltage	Vsı	$\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0 \Omega$	-250	-	250	V
Output terminal breakdown voltage	Vso	$\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0 \Omega$	-250	-	250	V
Vdd, Vss and V_{1} to V_{5} breakdown voltage	Vs	$\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0 \Omega$	-250	-	250	V

Measurement conditions

The measurement circuit is shown in the following figure. The switch is in position A until capacitor C charges to VC volts. It then switches to position B and the capacitor discharges through the device under test (DUT), applying a surge voltage to the test pin. All other pins are left open.
The supply voltages, Vc, increases in 50 V steps from 50 V to a maximum of 1 kV , or until the device breaks down. Breakdown has occurred if the leakage current between the test pin and the GND pin increases by $0.1 \mu \mathrm{~A}$ when the absolute maximum rated voltage is applied to the test
 pin.

AC Electrical Characteristics

Serial data timing

Parameter	Symbol	Condition	$\mathrm{VDD}=5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$			
			Rating			Unit
			min	typ	max	
SCK LOW-level pulsewidth	twL		0.35	-	0.65	$\mu \mathrm{s}$
SCK HIGH-level pulsewidth	twh		0.35	-	0.65	$\mu \mathrm{s}$
Data setup time	tsu		200	-	-	ns
Data hold time	th		200	-	-	ns
Output delay time	tpzy		-	-	200	ns

Expanded segment output timing

$\mathrm{VdD}=5.0 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $75^{\circ} \mathrm{C}$						
Parameter	Symbol	Condition	Rating			Unit
			min	typ	max	
LP and XSCL LOW-level pulsewidth	twcLl		$0.8 \times 2 / \mathrm{fc}_{\mathrm{c}}$	-	-	ns
LP and XSCL HIGH-level pulsewidth	twcli		$0.8 \times 2 / \mathrm{fc}$	-	-	ns
XSCL to LP and LP to XSCL setup time	tDSLP		$0.7 \times 2 / \mathrm{fc}_{\mathrm{c}}$	-	-	ns
DO to XSCL setup time	tosx		$0.7 \times 2 / \mathrm{fc}$	-	-	ns
XSCL to DO hold time	tDhx		$0.7 \times 2 / \mathrm{fc}_{\mathrm{c}}$	-	-	ns
FR delay time	tDFR		-1	-	1	$\mu \mathrm{s}$

Reset timing

$$
\text { VDD }=5.0 \mathrm{~V} \text {, Vss }=0 \mathrm{~V}, \mathrm{Ta}=-20 \text { to } 75^{\circ} \mathrm{C}
$$

Note: $0.1 \mathrm{~ms} \leq \mathrm{tr} \leq 10 \mathrm{~ms}, \mathrm{tf} \geq 1 \mathrm{~ms}$, $\mathrm{tRST} \geq 30 \mathrm{~ms}$.

FUNCTIONAL DESCRIPTION

Serial Data Communication

The SED1280 uses a synchronous serial data system, with all timing referenced to SCK. Data communication uses a 4-bit synchronization pattern.

Serial data reception

Data input on SID is clocked into the receiver buffer on the falling edge of SCK as shown in the following figure.

As the buffer state is undefined after power-ON, $\overline{\text { RST }}$ should be momentarily held LOW after power-ON to set all bits of the buffer to 1 .
Data loaded into the buffer is compared with the
synchronization pattern. If a match is detected, the next bit is treated as the start of the data block. The synchronization pattern should be repeated between consecutive blocks as shown in the following figure.

Data reception limits

The receiver incorporates two data buffers-buffer 1 and buffer 2 . When continuously receiving data, buffer 1 fills first, then buffer 2 . New data blocks are only received when both buffers are empty. New data is lost if it is sent while the controller is processing data in one or both
buffers. The busy status bit, ST1, is set to 1 while the controller is processing data.
Note that new data cannot be recieved while data is being transmitted, and that two data blocks received consecutively are treated as a single block.

Serial data transmission

SWC1 to SWC10 and EI1 to EI3 are scanned and their input logic levels transmitted serially from SOD as
shown in the following figure. Data is clocked out on the falling edge of SCK.

As the state of SOD is undefined after power-ON, $\overline{\text { RST }}$ should be momentarily held LOW after pow-ON to set SOD HIGH. SOD remains HIGH until the first command from the host is received and returns HIGH when data transmission is complete.

Data transmission and reception timing

Data transmission starts from the first falling edge of SCK after a block of data has been received. If two blocks of data are received consecutively, data transmission starts from the first falling edge of SCK after the first block has been received, as shown in the following figure.

Status bit

The ST1 status bit indicates that the controller is processing received data and cannot receive new data. When ST1 is HIGH, data is being processed and the host should not transmit new data until ST1 is LOW.
The host shoulld begin checking ST1, as shown in the following figure, as soon as it transmits new data.

If the host does not check ST1, it should determine when to send new data by calculating the processing time of each data block as shown in the following figure.

Register address	DB7		to							
0	0	0	1	1	X	X	X	X		
0	0	0	1	1	X	X	X	X		
0	0	0	1	1	X	X	X	X		
0	0	0	1	1	N	F	X	X		
0	0	0	0	0	1	0	0	0		
0										
0	0	0	0	0	0	0	0	1		
0	0	0	0	0	1	$1 / \mathrm{D}$	S			

Key switch and input data

The SED1280 scans the key inputs and expanded input ports once every 5 ms . The scanned data is then output on SOD as shown in the following figure. The status bit is updated each time data is transmitted.

Data transmission flow charts

The following figures show the 1278 core display data RAM processing when data is transferred from the host to the SED1280.

Transmission using the busy bit

Register address	DB7	to						

Timed access transmission

System Registers

The system registers access the data display RAM, character generator RAM and LED display RAM. These write-only registers are addressed using RA0 to RA2 as shown in the following table.

Address			Name	Function	
RA2	RA1	RA0			
0	0	0	1278 instruction register	Sets the 1278 core command and RAM address.	
0	0	1	1278 data register	Writes to the 1278 character generator RAM and display data RAM.	
0	1	0	Not used		
1	1	0	Not used		
1	0	0	LED address register	Sets the LED display register address.	
1	0	1	LED data register	Writes to the LED display address.	
1	1	0	Expanded output port register	Controls the expanded output ports.	
1	1	1	Test mode register	Used for factory inspection prior to delivery.	

LED address and data registers

These five, 8 -bit registers control an external 5×8-LED display. When a display data bit is set, the corresponding LED is ON. The following table shows the relationships
between the registers, the LED output drivers and the output ports associated with each LED.

LED address register											LED data register
Row output pin											
DB2	DB1	DB0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
0	0	0									LE1
0	0	1									LE2
0	1	0									LE3
0	1	1									LE4
1	0	0									LE5
Column output pin										SWS8	SWS7

Note: LED address register bits DB3 to DB7 are ignored.

For example, the following table shows the address and data sequence to turn ON the two LEDs connected between LE3 and SW3, and LE3 and SW7.

-	Address			Data							
\%	RA2	RA1	RAO	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	0	0	\times	\times	\times	\times	\times	0	1	0
2	1	0	1	0	1	0	0	0	1	0	0

Note: $x=$ don't care
When LED data is written continuously, the LED address register increments automatically.

Expanded output port register

This 2-bit register contains the data output on the EO1 and EO2 expanded output ports as shown in the following table.

For example, the following table shows the address and data to set EO1 to LOW and EO2 to HIGH.

Address				Data							
RA2	RA1	RA0	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
1	1	0	\times	\times	\times	\times	\times	\times	1	0	

Note: $x=$ don't care

Test mode register

This register is used to factory test the SED1280 prior to delivery. It is initialized by momentarily holding $\overline{\text { RST }}$ LOW.

Expanded output port data register							
DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
\times	\times	\times	\times	\times	\times	EO2	EO1

1278 instruction register

The following table shows the 1278 instructions.

Instruction	Code								Cycles	Description
	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Display Clear	0	0	0	0	0	0	0	1	1640	Clears the entire display and resets the display data RAM address counter.
Cursor Home	0	0	0	0	0	0	1	\times	1640	Resets the display data RAM address counter and returns a shifted display to its original position. The RAM contents are not changed.
Set Entry Mode	0	0	0	0	0	1	I/D	S	40	Enables the display shift and sets the display shift direction.
Display Attributes	0	0	0	0	1	D	C	B	40	Bit D enables/disables the entire screen, bit C enables/disables the cursor and bit B enables/ disables character blinking at the cursor position.
Cursor/display Shift	0	0	0	1	S/C	R/L	\times	\times	40	Shifts the display when a cursor move that does not alter the display data RAM occurs.
System Setup	0	0	1	IF	N	F	\times	\times	40	Bit iF sets the interface data length, bit N the number of display rows, and bit F, the font.
Select CGRAM	0	1	Character generator RAM address						40	Sets. the CGRAM address. Successive write instructions will address CGRAM.
Select DDRAM	1	Display data RAM address							40	Sets the DDRAM address. Successive write instructions will address DDRAM.

Note: $x=$ don't care

The control bit functions are shown in the following table.

Control bit	$\mathbf{0}$ Function	
	Decrement	Increment
S	No display shift	Disply shift
S/C	Cursor movement	Display shift
R/L	Left shift	Right shift
IF	4-bit interface	8-bit interface
N	One row	Two rows
F	5×7 pixels	5×10 pixels

1278 data register

This register is used for writing data to the 1278 display data (DD) RAM and character generator (CG) RAM. Data is written to DDRAM when a Select DDRAM instruction is executed before a Select CGRAM instruction, and written to CGRAM when a Select CGRAM instruction is executed.

Key Scanning

An 8×10-key matrix can be scanned using SWS1 to SWS8 scan outputs and SWC1 to SWC10 scan inputs. The SWS1 timing during one scan interval and SWS1 to SWS8 timing during several scans are shown in the following figures.

Key scan initialization

A key scan starts automatically once the first block of data is received from the host, after a reset. The 5 ms scan cycle runs continuously, once started, as shown in the following figure.

Expanded Input Ports

Scanning of the EO1 to EO3 expanded input ports starts automatically once the first block of data is received from the host, after a reset.

LED Controller

Up to 40 LEDs can be connected to SWS1 to SWS8 and LE1 to LE5 to form an 8×5 matrix.
To control the LEDs, LE1 to LE5 are connected to the based of external pnp transistors, and SWS1 to SWS8, to the LED anodes.

LED controller timing

The LED controller timing for one scan and a series of scans is shown in the following figures.

LED controller limits

Up to 25 mA can be drawn from any one of SWS1 to SWS8 with a maximum total of 100 mA for all eight pins. As the SED1280 does not current limit its outputs, the host should limit the number of LEDs that are ON simultaneously. For example, if a LED draws 5 mA , a maximum of 20 LEDs can be ON simultaneously.

DESIGN INFORMATION

Although the SED1280 contains an SED1278 core, there are some important differences. The following points should be noted when designing a system using an SED1280.

System Clock

The 1 MHz SED 1280 system clock is divided by four to generate the 250 kHz clock used by the SED1278 core. Accordingly, the SED1278 requires four times as many clock cycles as the SED1280 to execute the same instruction. The system clock must be connected, even if data transfer or key scanning is not used.

Data Interface

The SED1280 core data interface is eight bits wide. The SED1278 interface width is set to eight by setting the IF bit in the System Set instruction to 1 .

Data Output

The SED1280 does not support the SED1278 function allowing the host to read the DDRAM and CGRAM address counter. The SED1280 does, however, provide the ST1 busy bit output, which can be read by the host.

APPLICATION CIRCUITS

LCD Controller Resistor Divider

Note: C 0 is connected between VDD and Vss to prevent noise, and should be $0.1 \mu \mathrm{~F}$ or greater.

LCD Connections (2×20 character, 5×7 dots/character)

Note: SEG60 to SEG63 and DO1 are open.

LED Matrix Connections

Key Switch Matrix Connections

Note: Do not press two or more keys simultaneously.

AMERICA

S-MOS SYSTEMS, INC.
150 River Oaks Parkway
San Jose, CA 95134, U.S.A.
Phone: $+1-408-922-0200$ Fax: $+1-408-922-0238$
Telex: 176079 SMOS SNJUD
S-MOS SYSTEMS, INC.
EASTERN AREA SALES AND TECHNOLOGY CENTER
301 Edgewater Place, Suite 120
Wakefield, MA 01880, U.S.A.
Phone: +1-617-246-3600 Fax: +1-617-246-5443
S-MOS SYSTEMS, INC.
SOUTH EASTERN AREA SALES AND TECHNOLOGY CENTER
4300 Six Forks Road, Suite 430
Raleigh, NC 27609, U.S.A.
Phone: +1-919-781-7667 Fax: +1-919-781-6778
S-MOS SYSTEMS, INC.
CENTRAL AREA SALES AND TECHNOLOGY CENTER
1450 E.American Lane, Suite 1550
Schaumburg, IL 60173, U.S.A.
Phone: +1-847-517-7667 Fax: +1-847-517-7601

EUROPE

- HEADQUARTERS -

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15
80992 Muenchen, GERMANY
Phone : +49-(0)89-14005-0 Fax : +49-(0)89-14005-110

- GERMANY -

EPSON EUROPE ELECTRONICS GmbH

SALES OFFICE

Breidenbachstrasse 46
D-51373 Leverkusen, GERMANY
Phone : +49-(0)214-83070-0 Fax : +49-(0)214-83070-10

- UNITED KINGDOM -

EPSON EUROPE ELECTRONICS GmbH
UK BRANCH OFFICE
G6 Doncastle House, Doncastle Road
Bracknell, Berkshire RG12 8PE, ENGLAND
Phone:+44-(0)1344-381700 Fax:+44-(0)1344-381701

- FRANCE -

EPSON EUROPE ELECTRONICS GmbH
FRENCH BRANCH OFFICE
1 Avenue de I' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE

Phone:+33-(0)1-64862350 Fax:+33-(0)1-64862355

ASIA

- HONG KONG, CHINA -

EPSON HONG KONG LTD.
20/F., Harbour Centre, 25 Harbour Road
Wanchai, HONG KONG
Phone: +852-2585-4600 Fax: +852-2827-4346
Telex: 65542 EPSCO HX

- CHINA -

SHANGHAI EPSON ELECTRONICS CO., LTD.
4F, Bldg., 27, No. 69, Gui Jing Road
Caohejing, Shanghai, CHINA
Phone: 21-6485-5552 Fax: 21-6485-0775

- TAIWAN, R.O.C. -

EPSON TAIWAN TECHNOLOGY \& TRADING LTD.
10F, No. 287,Nanking East Road, Sec. 3
Taipei, TAIWAN, R.O.C.
Phone: 02-2717-7360 Fax: 02-2712-9164
Telex: 24444 EPSONTB
EPSON TAIWAN TECHNOLOGY \& TRADING LTD.
HSINCHU OFFICE
13F-3,No.295,Kuang-Fu Road,Sec. 2
HsinChu 300,TAIWAN,R.O.C.
Phone: 03-573-9900 Fax: 03-573-9169

- SINGAPORE -

EPSON SINGAPORE PTE., LTD.
No. 1 Temasek Avenue, \#36-00
Millenia Tower, SINGAPORE 039192
Phone: +65-337-7911 Fax: +65-334-2716

- KOREA -

SEIKO EPSON CORPORATION
KOREA OFFICE
10F, KLI 63 Bldg., 60 Yoido-Dong
Youngdeungpo-Ku, Seoul, 150-010, KOREA
Phone: 02-784-6027 Fax: 02-767-3677

- JAPAN -

SEIKO EPSON CORPORATION
ELECTRONIC DEVICES MARKETING DIVISION
Electronic Device Marketing Department
Card Products \& Marketing Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-7503 Fax: +81-(0)42-587-8423
ED International Marketing Department I
(Europe \& U.S.A.)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564
ED International Marketing Department II (Asia)
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "Saving" Technology, Epson electronic devices.
Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams.

Epson IS energy savings.

LCD Controller/Drivers

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

■ Electronic Devices Information on the EPSON WWW Server

[^0]: SI :Static icon register
 EV :Electronic volume register
 Test :Test register (Do not use)

[^1]: *3: D0 ~ D5, D6 (SCL), D7 (SI), A0, RES, $\overline{\mathrm{CS}} \overline{\mathrm{WR}}(\mathrm{E})$, P/S, IF

[^2]: - : Unused

 For signals : Output from SEGS2 to SEGS6.

[^3]: *1: At the fall and rise time of input signals, set 15 ns or less.
 *2: Every timing is specified on 20% and 80% of Vss.
 *3: The same timing is not required for A 0 and $\overline{\mathrm{CS}}$. Input signals so that A0 and $\overline{\mathrm{CS}}$ may satisfy $\mathrm{t}_{\mathrm{AW}} 8$ and $\mathrm{t} A \mathrm{~A} 8$ respectively.

